精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和Sn=10n-n2(n∈N*).
(1)求数列{an}的通项公式;
(2)求Sn的最大值;
(3)设bn=|an|,求数列{bn}的前10项和T10

分析 (1)由数列的递推式:n=1时,a1=S1;n≥2时,an=Sn-Sn-1,化简计算即可得到所求通项公式;
(2)配方,由二次函数的最值求法,即可得到所求最大值;
(3)求出bn=|an|=|11-2n|,讨论当1≤n≤5时,bn=11-2n;n≥6时,bn=2n-11.计算即可得到所求和.

解答 解:(1)数列{an}的前n项和Sn=10n-n2(n∈N*).
可得n=1时,a1=S1=10-1=9;
n≥2时,an=Sn-Sn-1=10n-n2-10(n-1)+(n-1)2=11-2n,
上式对n=1也成立.
则an=11-2n,n∈N*
(2)Sn=10n-n2=-(n-5)2+25,
当n=5时,Sn的最大值为25;
(3)bn=|an|=|11-2n|,
当1≤n≤5时,bn=11-2n;
n≥6时,bn=2n-11.
则数列{bn}的前10项和T10=9+7+5+3+1+1+3+5+7+9
=2×$\frac{1}{2}$(9+1)×5=50.

点评 本题考查数列的通项的求法,注意运用数列的递推式,考查数列的前n项和的最值以及等差数列的求和公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.圆心在y轴上,半径为2,且过点(2,4)的圆的方程为(  )
A.x2+(y-1)2=4B.x2+(y-2)2=4C.x2+(y-3)2=4D.x2+(y-4)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某大学高等数学这学期分别用A,B两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
   
 甲班乙班合计
优秀   
不优秀   
合计   
(1)学校规定:成绩不得低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误率的概率不超过0.025的前提下认为成绩优异与教学方式有关?”
下面临界值表仅供参考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考方式:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex+$\frac{ax}{x+1}$-1(a∈R且a为常数).
(1)当a=-1时,讨论函数f(x)在(-1,+∞)的单调性;
(2)设y=t(x)可求导数,且它的导函数t′(x)仍可求导数,则t′(x)再次求导所得函数称为原函数y=t(x)的二阶函数,记为t′′(x),利用二阶导函数可以判断一个函数的凹凸性.一个二阶可导的函数在区间[a,b]上是凸函数的充要条件是这个函数在(a,b)的二阶导函数非负.
若g(x)=(x+1)[f(x)+1]+(a-$\frac{1}{{2}^{{e}^{4}}}$)x2在(-∞,-1)不是凸函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=1nx-$\frac{a(x-1)}{x+1}$.(a∈R)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sin α=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求tan($\frac{π}{4}-α$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,且asinB=$\sqrt{3}$bcosA.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,c-b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.阅读如图的程序框图,若运行相应的程序,则输出k的值为99.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且a1=5,nSn+1-(n+1)Sn=n2+n.
(Ⅰ)求证:数列{$\frac{{S}_{n}}{n}$}为等差数列;
(Ⅱ)若bn=$\frac{1}{(2n+1){a}_{n}}$,判断{bn}的前n项和Tn与$\frac{1}{6}$的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案