精英家教网 > 高中数学 > 题目详情
13.阅读如图的程序框图,若运行相应的程序,则输出k的值为99.

分析 模拟程序框图的运行过程,得出程序运行后是计算S的值,
并判断S>2时输出k的值,总结规律即可得出结论.

解答 解:模拟程序框图运行过程,如下;
第1次运行:k=1,S=0+lg3=lg3,判断S>2?,否;
第2次运行:k=3,S=lg3+lg$\frac{5}{3}$=lg5,判断S>2?,否;
第3次运行:k=5,S=lg5+lg$\frac{7}{5}$=lg7,判断S>2?,否;
…,
第n次运行:k=2n-1,S=lg(2n+1),判断S>2?,是;
即lg(2n+1)>2,解得2n>99,即2n-1>98,
取2n-1=99,即输出k=2n-1=99.
故答案为:99.

点评 本题考查了循环结构的应用问题,解题时应总结运算规律,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数$f(x)=-x+\frac{1}{x}$在$[-2,-\frac{1}{3}]$上的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=10n-n2(n∈N*).
(1)求数列{an}的通项公式;
(2)求Sn的最大值;
(3)设bn=|an|,求数列{bn}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知扇形的半径为2cm,圆心角的为60°,则该扇形的面积为$\frac{2}{3}$π 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函数f(x)最小值;
(Ⅱ)关于x的不等式f(x)≤2-|x-1|有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.我国古代名著《考工记》中有“一尺之棰,日取其半,万世不竭”,如图给出的是计算截取了6天所剩棰长的程序框图,其中判断框内应填入的是(  )
A.i≤16?B.i≤32?C.i≤64?D.i≤128?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙、丁四名同学志愿到A,B两个社区进行服务,他们每人将一枚质地均匀的骰子抛掷一次,若向上的点数为5或6,则该同学去A社区,否则去B社区.
(1)求甲、乙、丙、丁四名同学中恰有1人去A社区的概率;
(2)设X表示去A社区的人数,Y表示去B社区的人数,记ξ=X•Y,求随机变量ξ的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为{Sn},且Sn=n(n+1)(n∈N*). 
(I)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,求数列{bn}的通项公式;
(III)令cn=$\frac{{{{({-1})}^n}{a_n}{b_n}}}{4}$,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数$f(x)=\frac{1}{2}{x^2}-({a-1})x-alnx$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)已知函数f(x)有极值m,求证:m<1.
(已知ln0.5≈-0.69,ln0.6≈-0.51)

查看答案和解析>>

同步练习册答案