精英家教网 > 高中数学 > 题目详情
18.已知$\overrightarrow{a}$=(1,-1),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,若△OAB是以点O为直角顶点的等腰直角三角形,则△OAB的面积为(  )
A.2B.4C.2$\sqrt{2}$D.$\sqrt{2}$

分析 根据△OAB是以O为直角顶点的等腰直角三角形,得到向量垂直和向量模长相等的条件,利用向量数量积的定义进行求解即可.

解答 解:若△OAB是以O为直角顶点的等腰直角三角形,
则$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,即$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
则($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,
即|$\overrightarrow{a}$|2-|$\overrightarrow{b}$|2=0,
则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{2}$,
又|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,
即|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,
平方得|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2-2$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$,
得$\overrightarrow{a}$•$\overrightarrow{b}$=0,
则|$\overrightarrow{OA}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2-2$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2=2+2=4,
则|$\overrightarrow{OA}$|=2,
则△OAB的面积S=$\frac{1}{2}$|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|=$\frac{1}{2}$×2×2=2.
故选:A.

点评 本题主要考查向量数量积的应用,根据等腰直角三角形的性质,结合向量垂直和向量相等的关系进行转化求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是等比数列,且a2=1,则a1+a2+a3的取值范围是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B、C,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{BC}$,则双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=cos(ωx+$\frac{π}{3}$)(ω>0)的图象与y=1的图象的两相邻交点间的距离为π,要得到y=f(x)的图象,只需把y=sinωx的图象(  )
A.向左平移$\frac{5π}{12}$个单位B.向右平移$\frac{5π}{12}$个单位
C.向左平移$\frac{7π}{12}$个单位D.向右平移$\frac{7π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数$f(x)=-x+\frac{1}{x}$在$[-2,-\frac{1}{3}]$上的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.
(Ⅰ)若x0≠60,求顾客转动一次转盘获得60元代金券的概率;
(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当x0=20时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;
(Ⅲ)记顾客每次转动转盘获得代金券的面额为X,当x0取何值时,X的方差最小?
(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A、B为垂足,且PA=4,PB=5,设A、B到棱l的距离分别为x、y,当θ变化时,点(x,y)的轨迹是下列图形中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函数f(x)最小值;
(Ⅱ)关于x的不等式f(x)≤2-|x-1|有解,求a的取值范围.

查看答案和解析>>

同步练习册答案