精英家教网 > 高中数学 > 题目详情
15.在数列{an}中,a1=2,an+1=an+lg(1+$\frac{1}{n}$),那么an=2+lgn.

分析 利用对数的运算性质化简数列的递推公式得an+1-an=lg(n+1)-lgn,利用累加法求出数列的通项公式.

解答 解:由an+1=an+lg(1+$\frac{1}{n}$)得,
an+1-an=lg(1+$\frac{1}{n}$)=$lg\frac{n+1}{n}$=lg(n+1)-lgn,
∴a2-a1=lg2-lg1,a3-a2=lg3-lg2,…,an-an-1=lgn-lg(n-1),
以上n-1个式子相加得,an-a1=(lg2-lg1)+(lg3-lg2)+…+[lgn-lg(n-1)]
=lgn-lg1=lgn,则an=a1+lgn,
∵a1=2,∴an=2+lgn,且n=1时也成立,
 故答案为:2+lgn.

点评 本题考查数列的递推公式的化简,以及累加法求数列的通项公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.(1+2x2)(x-$\frac{1}{x}$)8的展开式中常数项为(  )
A.42B.-42C.24D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列各式:
(1)($\frac{1-\sqrt{3}i}{1+i}$)2
(2)i2012+($\sqrt{2}$+$\sqrt{2}$i)8-($\frac{\sqrt{2}}{1-i}$)50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=-$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}中,a1•a3=4a2,a5=32.
(1)求数列{an}的通项公式;
(2)设bn=log2an,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的不等式ax-b>0的解集为(-∞,-1),则关于x的不等式$\frac{bx-a}{x+2}$>0的解集为{x|x>-1,或x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设m∈R,实数满足$\left\{{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}}\right.$,若|x+2y|≤18,则实数m的取值范围是(  )
A.-3≤m≤6B.m≥-3C.$-\frac{68}{7}≤m≤6$D.$-3≤m≤\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线M:x2=4y,圆C:x2+(y-3)2=4,在抛物线M上任取一点P,向圆C作两条切线PA和PB,切点分别为A,B,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为(  )
A.$-\frac{4}{9}$B.$-\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出S的值为8,则n的最小正整数为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案