精英家教网 > 高中数学 > 题目详情
20.设x、y、z均为正数,且3x=4y=6z
(1)试求x,y,z之间的关系;
(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);
(3)试比较3x、4y、6z的大小.

分析 (1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出$\frac{1}{x}$、$\frac{1}{y}$、$\frac{1}{z}$,由对数的运算性质化简$\frac{1}{z}-\frac{1}{x}$与$\frac{1}{y}$,即可得到关系值;
(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;
(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.

解答 解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,
则 x=log3k,y=log4k,z=log6k
∴$\frac{1}{x}=lo{g}_{k}^{3}$,$\frac{1}{y}=lo{g}_{k}^{4}$,$\frac{1}{z}=lo{g}_{k}^{6}$,
∵$\frac{1}{z}-\frac{1}{x}=lo{g}_{k}^{6}-lo{g}_{k}^{3}$=$lo{g}_{k}^{2}$,且$\frac{1}{y}=2lo{g}_{k}^{2}$,
∴$\frac{1}{z}-\frac{1}{x}=\frac{1}{2y}$;
(2)∵2x=py,∴p=$\frac{2x}{y}$=$\frac{2lo{g}_{3}^{k}}{lo{g}_{4}^{k}}$=$\frac{\frac{2lgk}{lg3}}{\frac{lgk}{lg4}}$=$\frac{2lg4}{lg3}$=2${log}_{3}^{4}$=log316
∴2<log316<3,即 2<p<3,
∵p-2=log316-2=${log}_{3}^{\frac{16}{9}}$,3-p=3-log316=${log}_{3}^{\frac{27}{16}}$,
∵$\frac{16}{9}$-$\frac{27}{16}$=$\frac{13}{144}>$0,∴$\frac{16}{9}>\frac{27}{16}$,即${log}_{3}^{\frac{16}{9}}$>${log}_{3}^{\frac{27}{16}}$,
∴与p的差最小的整数是3;
(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k
又x、y、z∈R+,∴k>1,
$\frac{1}{3x}-\frac{1}{4y}$=$\frac{1}{3}lo{g}_{k}^{3}$-$\frac{1}{4}$$lo{g}_{k}^{4}$=${log}_{k}^{\frac{\root{3}{3}}{\root{4}{4}}}$=${log}_{k}^{\root{6}{\frac{9}{8}}}$>0,
∴$\frac{1}{3x}>\frac{1}{4y}$,则3x<4y,
同理可求$\frac{1}{4y}-\frac{1}{6z}$=${log}_{k}^{\root{6}{\frac{3}{4}}}$>0,则4y<6z,
综上可知,3x<4y<6z.

点评 本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.甲、乙两所学校高三年级分别有600人,500人,为了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
 分组[70,80)[80,90)[90,100)[100,110)
 频数 3 4 7 14
 分组[110,120)[120,130)[130,140)[140,150]
 频数 17 4
乙校:
 分组[70,80)[80,90)[90,100)[100,110)
 频数 1 2 8 9
 分组[110,120)[120,130)[130,140)[140,150]
 频数 1010  y
(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异;
(3)若规定考试成绩在[120,150]内为优秀,现从已抽取的110人中抽取两人,要求每校抽1人,所抽的两人中有人优秀的条件下,求乙校被抽到的同学不是优秀的概率.
 甲校 乙校 总计 
 优秀   
 非优秀   
 总计   
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
临界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用部分自然数构造如图的数表:用aij(i≥j)表示第i行第j个数(i,j∈N+),使得ai1=aii=i.每行中的其他各数分别等于其“肩膀”上的两个数之和,a(i+1)j=ai(j-1)+aij(i≥2,j≥2).设第n(n∈N+)行的第二个数为bn(n≥2).
(1)写出第7行的第三个数; 
(2)写出bn+1与bn的关系并求bn(n≥2);
(3)设cn=2(bn-1)+n,证明:$\frac{1}{c_2}$+$\frac{1}{c_4}$+$\frac{1}{c_6}$+…+$\frac{1}{{{c_{2n}}}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知随机变量ξ的分布列为
ξ-2-10123
P$\frac{1}{12}$$\frac{3}{12}$$\frac{4}{12}$$\frac{1}{12}$$\frac{2}{12}$$\frac{1}{12}$
若P(ξ2>x)=$\frac{1}{12}$,则实数x的取值范围是[4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同,从中随机有放回地抽取3次,每次抽取1张,求下列事件的概率.
(1)求“抽取的卡片上的数字满足其中两张之和等于第三张”的概率;
(2)求“抽取的卡片上的数字不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x-a≥0}\end{array}\right.$,若|$\frac{y}{x-2}$|=$\frac{1}{2}$恒成立,则实数a的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的公比q=2,且a2,a3+1,a4成等差数列.
(1)求a1及an
(2)设bn=an+n,求数列{bn}的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.无论m、n取何实数,直线(3m-n)x+(m+2n)y-n=0都过一定点P,则P点坐标为(  )
A.(-1,3)B.(-$\frac{1}{2}$,$\frac{3}{2}$)C.(-$\frac{1}{5}$,$\frac{3}{5}$)D.(-$\frac{1}{7}$,$\frac{3}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知四面体P-ABC的所有顶点都在球O的球面上,PC为球O的直径,且球的体积为$\frac{4π}{3}$,AC=BC=1,AB=$\sqrt{3}$.则此四面体的表面积为(  )
A.$\sqrt{3}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案