分析 (1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;
(2)求得bn=2n-1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.
解答 解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,
又a2,a3+1,a4成等差数列,可得:
2(a3+1)=a2+a4,
所以2(4a1+1)=2a1+8a1,
解得a1=1,
故an=a1qn-1=2n-1;
(2)因为bn=2n-1+n,
所以S5=b1+b2+b3+b4+b5
=(1+2+…+16)+(1+2+…+5)
=$\frac{1•(1-{2}^{5})}{1-2}$+$\frac{5(1+5)}{2}$=31+15=46.
点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查解方程的思想和数列的求和方法:分组求和,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{141}$ | B. | 2$\sqrt{141}$ | C. | 16$\sqrt{6}$ | D. | 4$\sqrt{141}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com