精英家教网 > 高中数学 > 题目详情
7.如图,在正方体ABCD-A1B1C1D1中,直线BD与A1C1的位置关系是(  )
A.平行B.相交C.异面但不垂直D.异面且垂直

分析 连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.

解答 解:∵正方体的对面平行,∴直线BD与A1C1异面,
连接AC,则AC∥A1C1,AC⊥BD,
∴直线BD与A1C1垂直,
∴直线BD与A1C1异面且垂直,
故选:D.

点评 本题给出长方体,判断它的两条对角线的位置关系,着重考查了空间两条直线位置关系的判断及其证明的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an},a3=4,且a3,a4+2,a5成等差数列,数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)若Tn<m对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设有一正态总体,它的概率密度曲线是函数y=f(x)的图象,且f(x)=$\frac{1}{{\sqrt{8π}}}{e^{-\frac{{{{(x-10)}^2}}}{8}}}$,则这个正态总体的期望与标准差分别是(  )
A.10与4B.10与2C.4与10D.2与10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同,从中随机有放回地抽取3次,每次抽取1张,求下列事件的概率.
(1)求“抽取的卡片上的数字满足其中两张之和等于第三张”的概率;
(2)求“抽取的卡片上的数字不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线l1:mx-y=0与直线l2:x-my+4=0互相平行,则实数m的值为(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的公比q=2,且a2,a3+1,a4成等差数列.
(1)求a1及an
(2)设bn=an+n,求数列{bn}的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算(式中字母均正):
(1)(3${a}^{\frac{2}{3}}$${b}^{\frac{1}{2}}$)(-8${a}^{\frac{1}{2}}$${b}^{\frac{1}{3}}$)÷(-6${a}^{\frac{1}{6}}$${b}^{\frac{5}{6}}$)
(2)(${m}^{\frac{1}{4}}$${n}^{\frac{3}{8}}$)16
(3)$\frac{{a}^{3}}{\sqrt{a}•\root{3}{{a}^{4}}}$
(4)(2m2${n}^{-\frac{3}{5}}$)10÷(-${m}^{\frac{1}{2}}$n-36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以点(-2,1)为圆心且与直线3x-4y-10=0相切的圆的方程为(  )
A.(x-2)2+(y+1)2=4B.(x+2)2+(y-1)2=4C.(x-2)2+(y+1)2=16D.(x+2)2+(y-1)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,依次为正视图(主视图),侧视图(左视图),俯视图,则此几何体的表面积为9+9$\sqrt{2}$

查看答案和解析>>

同步练习册答案