精英家教网 > 高中数学 > 题目详情
2.已知空间四面体ABCD中,AC=AD=BC=BD=2,且四面体ABCD的外接球的表面积为7π,如果AB=CD=a,则a=$\sqrt{6}$.

分析 由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以a,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而利用四面体ABCD的外接球的表面积为7π,求出a.

解答 解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,
所以可在其每个面补上一个以a,2,2为三边的三角形作为底面,
且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,
从而可得到一个长、宽、高分别为x,y,z的长方体,
并且x2+y2=a2,x2+z2=4,y2+z2=4,
设球半径为R,则有(2R)2=x2+y2+z2=$\frac{1}{2}$a2+4,
∵四面体ABCD的外接球的表面积为7π,
∴球的表面积为S=4πR2=7π.
∴4R2=7,
∴$\frac{1}{2}$a2+4=7,∴a=$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题考查几何体的外接球的表面积的求法,割补法的应用,判断外接球的直径是长方体的对角线的长是解题的关键之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列关于程序框图的描述
①对于一个算法来说程序框图是唯一的;
②任何一个框图都必须有起止框;
③程序框图只有一个入口,也只有一个出口;
④输出框一定要在终止框前.
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.连续掷一枚骰子两次,则两次骰子正面向上的点数之和为奇数的概率为(  )
A.$\frac{5}{12}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两所学校高三年级分别有600人,500人,为了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
 分组[70,80)[80,90)[90,100)[100,110)
 频数 3 4 7 14
 分组[110,120)[120,130)[130,140)[140,150]
 频数 17 4
乙校:
 分组[70,80)[80,90)[90,100)[100,110)
 频数 1 2 8 9
 分组[110,120)[120,130)[130,140)[140,150]
 频数 1010  y
(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异;
(3)若规定考试成绩在[120,150]内为优秀,现从已抽取的110人中抽取两人,要求每校抽1人,所抽的两人中有人优秀的条件下,求乙校被抽到的同学不是优秀的概率.
 甲校 乙校 总计 
 优秀   
 非优秀   
 总计   
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
临界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an},a3=4,且a3,a4+2,a5成等差数列,数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)若Tn<m对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.${∫}_{0}^{\frac{π}{2}}$cosxdx等于(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某人对一地区人均工资x(千元)与该地区人均消费y(千元)进行统计调查,y与x有相关关系,得到回归直线方程$\hat y$=0.66x+1.56.若该地区的人均消费水平为7.5千元,则该地区的人均工资收入为9(千元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用部分自然数构造如图的数表:用aij(i≥j)表示第i行第j个数(i,j∈N+),使得ai1=aii=i.每行中的其他各数分别等于其“肩膀”上的两个数之和,a(i+1)j=ai(j-1)+aij(i≥2,j≥2).设第n(n∈N+)行的第二个数为bn(n≥2).
(1)写出第7行的第三个数; 
(2)写出bn+1与bn的关系并求bn(n≥2);
(3)设cn=2(bn-1)+n,证明:$\frac{1}{c_2}$+$\frac{1}{c_4}$+$\frac{1}{c_6}$+…+$\frac{1}{{{c_{2n}}}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的公比q=2,且a2,a3+1,a4成等差数列.
(1)求a1及an
(2)设bn=an+n,求数列{bn}的前5项和S5

查看答案和解析>>

同步练习册答案