精英家教网 > 高中数学 > 题目详情
13.已知点P在直径为$\sqrt{2}$的球面上,过点P作球的两两垂直的三条弦PA、PB、PC,若PA=PB,则PA+PB+PC的最大值为(  )
A.$\sqrt{6}$B.$\sqrt{2}$+1C.$\sqrt{2}$+2D.3

分析 由已知,PA,PB,PC两两垂直,点P在直径为$\sqrt{2}$的球面上,球直径等于以PA,PB,PC为棱的长方体的对角线,得到2PB2+PC2=2,再结合三角换元法,由三角函数的性质得到PA+PB+PC的最大值.

解答 解:∵PA,PB,PC两两垂直,点P在直径为$\sqrt{2}$的球面上,
∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.
∴2=PA2+PB2+PC2,又PA=PB,∴2PB2+PC2=2,
设PB=cosα,PC=$\sqrt{2}$sinα,
则PA+PB+PC=2PB+PC=2cosα+$\sqrt{2}$sinα=$\sqrt{6}$sin(α+φ)≤$\sqrt{6}$.
则PA+PB+PC的最大值为$\sqrt{6}$,
故选:A.

点评 本题考查球的内接几何体,其中根据已知条件,得到棱锥的外接球直径等于以PA,PB,PC为棱的长方体的对角线,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知直线x-my-1-m=0与圆x2+y2=1相切,则实数m的值为(  )
A.l或0B.0C.-1或0D.l或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点P(l,-$\sqrt{3}$)的直线l截圆x2+y2=5所得弦长不小于4,则直线l的倾斜角的取值范围是(  )
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{2π}{3}$]C.[$\frac{π}{2}$,$\frac{5π}{6}$]D.[$\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好两人都支持“生育二胎放开”的概率是多少?
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若存在α,β∈R,使得$\left\{{\begin{array}{l}{t={{cos}^3}β+\frac{α}{2}cosβ}\\{α≤t≤α-5cosβ}\end{array}}\right.$,则实数t的取值范围是[$-\frac{2}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线3x+4y+c=0与圆心为C的圆x2+(y-1)2=2相交于A,B两点,且△ABC为直角三角形,则实数c等于1或-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.三棱锥S-ABC中,侧棱SA⊥平面ABC,底面ABC是边长为$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,则该三棱锥的外接球体积等于$\frac{32}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角x始边与x轴的非负半轴重合,与圆x2+y2=4相交于点A,终边与圆x2+y2=4相交于点B,点B在x轴上的射影为C,△ABC的面积为S(x),函数y=S(x)的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(文科做)$\overrightarrow m$=($\sqrt{3}$sinx,cosx),$\overrightarrow n$=(3$\sqrt{3}$,1),且$\overrightarrow m$∥$\overrightarrow n$,则$\frac{sin2x}{1+cos2x}$的值为(  )
A.2B.3C.4D.6

查看答案和解析>>

同步练习册答案