分析 依题意△ABC为等腰直角三角形,且AC=BC=$\sqrt{2}$,AB=$\sqrt{2+2}$=2,圆心C(0,1)到直线AB:3x+4y+c=0的距离为AB的一半,由此能求出结果.
解答 解:∵直线3x+4y+c=0与圆心为C的圆x2+(y-1)2=2相交于A,B两点,且△ABC为直角三角形,
∴依题意△ABC为等腰直角三角形,且AC=BC=$\sqrt{2}$,AB=$\sqrt{2+2}$=2,
∴圆心C(0,1)到直线AB:3x+4y+c=0的距离为AB的一半,
∴$\frac{|4+c|}{\sqrt{9+16}}$=1,即$\frac{|4+c|}{5}=1$,解得c=1或c=-9.
故答案为:1或-9.
点评 本题考查实数值的求法,是中档题,解题时要认真审题,注意圆的性质、点到直线的距离公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 12π | C. | $\frac{\sqrt{3}}{2}$π | D. | 3π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-2) | B. | (-2,-3) | C. | (3,2) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2>k0) | 0.100 | 0.050 | 0.010 |
| K | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{2}$+2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com