精英家教网 > 高中数学 > 题目详情
5.三棱锥S-ABC中,侧棱SA⊥平面ABC,底面ABC是边长为$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,则该三棱锥的外接球体积等于$\frac{32}{3}$π.

分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,得球的半径R,然后求解体积.

解答 解:根据已知中侧棱SA⊥平面ABC,底面ABC是边长为$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,
可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,
∵△ABC是边长为$\sqrt{3}$的正三角形,
∴△ABC的外接圆半径r=$\frac{\sqrt{3}}{3}$×$\sqrt{3}$=1,球心到△ABC的外接圆圆心的距离d=$\frac{1}{2}$SA=$\sqrt{3}$,
故球的半径R=$\sqrt{1+3}$=2.
三棱锥S-ABC外接球的体积为:$\frac{4}{3}$π×23=$\frac{32}{3}$π.
故答案为:$\frac{32}{3}$π.

点评 本题考查的知识点是球内接多面体,熟练掌握球的半径R公式是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为3,则球O的体积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD,若DA=DH=DB=4,AE=CG=3
(1)求证:EG⊥DF;
(2)求BE与平面EFGH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点P在直径为$\sqrt{2}$的球面上,过点P作球的两两垂直的三条弦PA、PB、PC,若PA=PB,则PA+PB+PC的最大值为(  )
A.$\sqrt{6}$B.$\sqrt{2}$+1C.$\sqrt{2}$+2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C:x2-2x+y2+4y+1=0,经过点P(3,4)的直线分别与圆C相切于点A、B,则三角形ABC的面积等于$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在三棱锥P-ABC中,平面PAC⊥平面ABC,△PAC为等腰直角三角形,PA⊥PC,AC⊥BC,BC=2AC=4,M为AB的中点.
(Ⅰ)求证:AC⊥PM;
(Ⅱ)求PC与平面PAB所成角的正弦值;
(Ⅲ)在线段PB上是否存在点N使得平面CNM⊥平面PAB?若存在,求出$\frac{PN}{PB}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,切点分别为A、B,若四边形PACB的最小面积为2,则k的值为(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin(π+α)=-$\frac{1}{3}$,则$\frac{sin2α}{cosα}$=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某分公司经销某种产品,每件产品的成本为3元,并且每件产品需向总公司交纳6元的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为x2万件.
(Ⅰ)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润L最大?

查看答案和解析>>

同步练习册答案