精英家教网 > 高中数学 > 题目详情
8.已知直线$\sqrt{3}$x-y+2=0及直线$\sqrt{3}$x-y-10=0截圆C所得的弦长均为8,则圆C的面积是(  )
A.25πB.36πC.49πD.32π

分析 由两平行直线间的距离公式求出圆心到直线的距离,由弦长公式求出圆的半径,由面积公式求出圆的面积.

解答 解:两平行直线$\sqrt{3}$x-y+2=0、$\sqrt{3}$x-y-10=0间的距离d=$\frac{|2-(-10)|}{\sqrt{(\sqrt{3})^{2}+1}}$=6,
∴圆心C到直线直线$\sqrt{3}$x-y+2=0的距离是3,
∵两平行直线截圆C所得的弦长均为8,
∴圆C的半径r=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴圆C的面积S=πr2=25π,
故选:A.

点评 本题考查直线与圆相交时弦长问题,圆的面积公式,以及两平行直线间的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.证明关于函数y=[x]的如下不等式:
(1)当x>0时,1-x<x[$\frac{1}{x}$]≤1;
(2)当x<0时,1≤x[$\frac{1}{x}$]<1-x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(10a+b)12的展开式中二项式系数最大的项是第(  )项.
A.6B.7C.6或7D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|a≤x≤a+3},B={x|x<-4或x>5}.若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),左焦点为F1(-$\sqrt{3}$,0).
(1)求椭圆C的方程;
(2)过点(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2,椭圆C2以F1,F2为焦点且椭圆C2上的点到F1的距离的最大值为3.
(1)求椭圆的标准方程;
(2)直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2两点,与椭圆C2交于B1、B2两点,当以B1B2为直径的圆经过F1时,求|A1A2|的长;
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作⊙M是否存在定圆⊙N,使得⊙M与⊙N恒相切,若存在,求出⊙N的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系xOy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(  )
A.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]B.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1)C.[-$\sqrt{5}$-1,$\sqrt{5}$-1]D.[-$\sqrt{5}$-1,$\sqrt{5}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过点(2,0)引直线l与圆x2+y2=2相交于A,B两点,O为坐标原点,当△AOB面积取最大值时,直线l的斜率为(  )
A.$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.±$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\frac{1}{3}$ax3-2x2+cx在R上单调递增且ac≤4,则$\frac{a}{{c}^{2}+4}$+$\frac{c}{{a}^{2}+4}$的最小值为(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案