·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖªC=1£¬a+c=3£¬¼´¿ÉÇóµÃa¡¢bºÍcµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©·ÖÀ൱бÂʲ»´æÔÚʱ£¬Åжϲ»³ÉÁ¢£¬µ±Ð±ÂÊ´æÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬µÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓÉΤ´ï¶¨Àí¡¢Ô²µÄÐÔÖÊ¡¢ÏÒ³¤¹«Ê½ÄÜÇó³ö|A1A2|£®
£¨3£©¶¨Ô²NµÄ·½³ÌΪ£º£¨x+1£©2+y2=16£¬ÇóµÃÔ²ÐÄ£¬ÓÉÅ×ÎïÏßµÄÐÔÖÊ£¬¿ÉÇóµÃ|MF1|=4-|MF2|£¬Á½Ô²ÏàÄÚÇУ®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßC1£ºy2=4xµÄ×¼ÏßÓëxÖá½»ÓÚµãF1£¬½¹µãΪF2£¬
¡àÍÖÔ²C2µÄ½¹µã×ø±êΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
ÉèÍÖÔ²C2µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=1}\\{a+c=3}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬¡£¨3·Ö£©
£¨2£©µ±Ö±ÏßlÓëxÖᴹֱʱ£¬B1£¨1£¬$\frac{3}{2}$£©£¬B2£¨1£¬-$\frac{3}{2}$£©£¬
ÓÖF1£¨-1£¬0£©£¬´Ëʱ$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{2}{F}_{1}}$¡Ù0£¬
¡àÒÔB1B2Ϊֱ¾¶µÄÔ²²»¾¹ýF1£¬²»Âú×ãÌõ¼þ£¬
µ±Ö±Ïßl²»ÓëxÖᴹֱʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬¼´£¨3+4k2£©x2+8k2x+4k2-12=0£¬
¡ß½¹µãÔÚÍÖÔ²ÄÚ²¿£¬¡àºãÓÐÁ½¸ö½»µã£¬
ÉèB1£¨x1£¬y1£©£¬B2£¨x2£¬y2£©£¬Ôòx1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$£¬x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$£¬
¡ßÒÔB1B2Ϊֱ¾¶µÄÔ²¾¹ýF1£¬
¡à$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{2}{F}_{1}}$=0£¬ÓÖF1£¨-1£¬0£©£¬
¡à£¨-1-x1£©•£¨-1-x2£©+y1y2=0£¬
¡à£¨1+k2£©x1x2+£¨1-k2£©£¨x1+x2£©+1+k2=0£¬
¡à£¨1+k2£©•$\frac{4{k}^{2}-12}{3+4{k}^{2}}$+£¨1-k2£©•£¨-$\frac{8{k}^{2}}{3+4{k}^{2}}$£©+1+k2=0£¬
½âµÃk2=$\frac{9}{7}$£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{{y}^{2}=4x}\end{array}\right.$£¬µÃk2x2-£¨2k2+4£©x+k2=0£¬
¡ßÖ±ÏßlÓëÅ×ÎïÏßÓÐÁ½¸ö½»µã£¬
¡àk¡Ù0£¬ÉèA1£¨x3£¬y3£©£¬A2£¨x4£¬y4£©£¬Ôòx3+x4=$\frac{2{k}^{2}+4}{{k}^{2}}$=2+$\frac{4}{{k}^{2}}$£¬x3x4=1£¬
¡à|A1A2|=x3+x4+p=2+$\frac{4}{{k}^{2}}$+2=$\frac{64}{9}$£¬¡£¨8·Ö£©
£¨3£©´æÔÚ¶¨Ô²N£¬Ê¹µÃ¡ÑMÓë¡ÑNºãÏàÇУ¬
¶¨Ô²NµÄ·½³ÌΪ£º£¨x+1£©2+y2=16£¬Ô²ÐÄÊÇ×ó½¹µãF£¨-1£¬0£©£¬
ÓÉÍÖÔ²¶¨ÒåÖª|MF1|+|MF2|=2a=4£¬
¡à|MF1|=4-|MF2|£¬
¡àÁ½Ô²ÏàÄÚÇУ® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬½âÌâʱҪעÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ô²µÄÐÔÖÊ¡¢ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2$\sqrt{2}$ | B£® | $\sqrt{17}$ | C£® | 3$\sqrt{2}$ | D£® | $\sqrt{33}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 25¦Ð | B£® | 36¦Ð | C£® | 49¦Ð | D£® | 32¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{2}{5}\sqrt{6}$ | B£® | $\frac{3}{5}\sqrt{6}$ | C£® | $\frac{4}{5}\sqrt{6}$ | D£® | $\sqrt{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÏßÐÔÏà¹Ø¹ØÏµ½ÏÇ¿£¬bµÄֵΪ3.25 | B£® | ÏßÐÔÏà¹Ø¹ØÏµ½ÏÇ¿£¬bµÄֵΪ0.83 | ||
| C£® | ÏßÐÔÏà¹Ø¹ØÏµ½ÏÇ¿£¬bµÄֵΪ-0.87 | D£® | ÏßÐÔÏà¹Ø¹ØÏµÌ«Èõ£¬ÎÞÑо¿¼ÛÖµ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com