13£®ÉèÅ×ÎïÏßC1£ºy2=4xµÄ×¼ÏßÓëxÖá½»ÓÚµãF1£¬½¹µãΪF2£¬ÍÖÔ²C2ÒÔF1£¬F2Ϊ½¹µãÇÒÍÖÔ²C2Éϵĵ㵽F1µÄ¾àÀëµÄ×î´óֵΪ3£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Ö±Ïßl¾­¹ýÍÖÔ²C2µÄÓÒ½¹µãF2£¬ÓëÅ×ÎïÏßC1½»ÓÚA1¡¢A2Á½µã£¬ÓëÍÖÔ²C2½»ÓÚB1¡¢B2Á½µã£¬µ±ÒÔB1B2Ϊֱ¾¶µÄÔ²¾­¹ýF1ʱ£¬Çó|A1A2|µÄ³¤£»
£¨3£©ÈôMÊÇÍÖÔ²Éϵ͝µã£¬ÒÔMΪԲÐÄ£¬MF2Ϊ°ë¾¶×÷¡ÑMÊÇ·ñ´æÔÚ¶¨Ô²¡ÑN£¬Ê¹µÃ¡ÑMÓë¡ÑNºãÏàÇУ¬Èô´æÔÚ£¬Çó³ö¡ÑNµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖªC=1£¬a+c=3£¬¼´¿ÉÇóµÃa¡¢bºÍcµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©·ÖÀ൱бÂʲ»´æÔÚʱ£¬Åжϲ»³ÉÁ¢£¬µ±Ð±ÂÊ´æÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬µÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓÉΤ´ï¶¨Àí¡¢Ô²µÄÐÔÖÊ¡¢ÏÒ³¤¹«Ê½ÄÜÇó³ö|A1A2|£®
£¨3£©¶¨Ô²NµÄ·½³ÌΪ£º£¨x+1£©2+y2=16£¬ÇóµÃÔ²ÐÄ£¬ÓÉÅ×ÎïÏßµÄÐÔÖÊ£¬¿ÉÇóµÃ|MF1|=4-|MF2|£¬Á½Ô²ÏàÄÚÇУ®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßC1£ºy2=4xµÄ×¼ÏßÓëxÖá½»ÓÚµãF1£¬½¹µãΪF2£¬
¡àÍÖÔ²C2µÄ½¹µã×ø±êΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
ÉèÍÖÔ²C2µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=1}\\{a+c=3}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬¡­£¨3·Ö£©
£¨2£©µ±Ö±ÏßlÓëxÖᴹֱʱ£¬B1£¨1£¬$\frac{3}{2}$£©£¬B2£¨1£¬-$\frac{3}{2}$£©£¬
ÓÖF1£¨-1£¬0£©£¬´Ëʱ$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{2}{F}_{1}}$¡Ù0£¬
¡àÒÔB1B2Ϊֱ¾¶µÄÔ²²»¾­¹ýF1£¬²»Âú×ãÌõ¼þ£¬
µ±Ö±Ïßl²»ÓëxÖᴹֱʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬¼´£¨3+4k2£©x2+8k2x+4k2-12=0£¬
¡ß½¹µãÔÚÍÖÔ²ÄÚ²¿£¬¡àºãÓÐÁ½¸ö½»µã£¬
ÉèB1£¨x1£¬y1£©£¬B2£¨x2£¬y2£©£¬Ôòx1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$£¬x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$£¬
¡ßÒÔB1B2Ϊֱ¾¶µÄÔ²¾­¹ýF1£¬
¡à$\overrightarrow{{B}_{1}{F}_{1}}$•$\overrightarrow{{B}_{2}{F}_{1}}$=0£¬ÓÖF1£¨-1£¬0£©£¬
¡à£¨-1-x1£©•£¨-1-x2£©+y1y2=0£¬
¡à£¨1+k2£©x1x2+£¨1-k2£©£¨x1+x2£©+1+k2=0£¬
¡à£¨1+k2£©•$\frac{4{k}^{2}-12}{3+4{k}^{2}}$+£¨1-k2£©•£¨-$\frac{8{k}^{2}}{3+4{k}^{2}}$£©+1+k2=0£¬
½âµÃk2=$\frac{9}{7}$£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{{y}^{2}=4x}\end{array}\right.$£¬µÃk2x2-£¨2k2+4£©x+k2=0£¬
¡ßÖ±ÏßlÓëÅ×ÎïÏßÓÐÁ½¸ö½»µã£¬
¡àk¡Ù0£¬ÉèA1£¨x3£¬y3£©£¬A2£¨x4£¬y4£©£¬Ôòx3+x4=$\frac{2{k}^{2}+4}{{k}^{2}}$=2+$\frac{4}{{k}^{2}}$£¬x3x4=1£¬
¡à|A1A2|=x3+x4+p=2+$\frac{4}{{k}^{2}}$+2=$\frac{64}{9}$£¬¡­£¨8·Ö£©
£¨3£©´æÔÚ¶¨Ô²N£¬Ê¹µÃ¡ÑMÓë¡ÑNºãÏàÇУ¬
¶¨Ô²NµÄ·½³ÌΪ£º£¨x+1£©2+y2=16£¬Ô²ÐÄÊÇ×ó½¹µãF£¨-1£¬0£©£¬
ÓÉÍÖÔ²¶¨ÒåÖª|MF1|+|MF2|=2a=4£¬
¡à|MF1|=4-|MF2|£¬
¡àÁ½Ô²ÏàÄÚÇУ®   ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬½âÌâʱҪעÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ô²µÄÐÔÖÊ¡¢ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÇóÖ¤£ºÔڰ뾶ΪRµÄÔ²µÄÄÚ½Ó¾ØÐÎÖУ¬Ãæ»ý×î´óµÄÊÇÕý·½ÐΣ¬ËüµÄÃæ»ýµÈÓÚ2R2£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªf£¨x£©=$\frac{2x+3}{\sqrt{4kx+3}}$
£¨1£©Èôf£¨x£©µÄ¶¨ÒåÓòΪR£¬ÇóʵÊýkµÄÖµ£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃf£¨x£©µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬-2£©£¿Èô´æÔÚ£¬Çó³öʵÊýkµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÔòÏÂÁÐÊý¾ÝÖв»ÊǸü¸ºÎÌåµÄÀⳤµÄÊÇ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®$\sqrt{17}$C£®3$\sqrt{2}$D£®$\sqrt{33}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÖ±Ïß$\sqrt{3}$x-y+2=0¼°Ö±Ïß$\sqrt{3}$x-y-10=0½ØÔ²CËùµÃµÄÏÒ³¤¾ùΪ8£¬ÔòÔ²CµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®25¦ÐB£®36¦ÐC£®49¦ÐD£®32¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈôÔ²C£º£¨x-3£©2+£¨y-2£©2=1£¨a£¾0£©ÓëÖ±Ïßy=$\frac{3}{4}$xÏཻÓÚP¡¢QÁ½µã£¬Ôò|PQ|=£¨¡¡¡¡£©
A£®$\frac{2}{5}\sqrt{6}$B£®$\frac{3}{5}\sqrt{6}$C£®$\frac{4}{5}\sqrt{6}$D£®$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½«Ô²O£ºx2+y2=4Éϸ÷µãµÄ×Ý×ø±ê±äΪԭÀ´µÄÒ»°ë £¨ºá×ø±ê²»±ä£©£¬µÃµ½ÇúÏßC£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýµã$F£¨\sqrt{3}£¬0£©$µÄÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬NΪÏß¶ÎABµÄÖе㣬ÑÓ³¤Ïß¶ÎON½»ÇúÏßCÓÚµãE£®ÇóÖ¤£º$\overrightarrow{OE}=2\overrightarrow{ON}$µÄ³äÒªÌõ¼þÊÇ|AB|=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªµãA£¨-1£¬0£©£¬B£¨2£¬0£©£¬¶¯µãPÂú×ã|$\overrightarrow{PA}$|¡Ý2|$\overrightarrow{PB}$|£¬Ö±ÏßPA½»yÖáÓÚµãC£¬Ôòsin¡ÏACBµÄ×î´óֵΪ$\frac{3\sqrt{39}}{26}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÎªÑо¿ÓïÎijɼ¨ºÍÓ¢Óï³É¼¨Ö®¼äÊÇ·ñ¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬Í³¼ÆÁ½¿Æ³É¼¨µÃµ½ÈçͼËùʾµÄÉ¢µãͼ£¨Á½×ø±êÖᵥ볤¶ÈÏàͬ£©£¬ÓûعéÖ±Ïß$\hat y$=$\hat b$x+$\hat a$½üËÆµØ¿Ì»­ÆäÏà¹ØÏµ£¬¸ù¾ÝͼÐΣ¬ÒÔϽáÂÛ×îÓпÉÄܳÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®ÏßÐÔÏà¹Ø¹ØÏµ½ÏÇ¿£¬bµÄֵΪ3.25B£®ÏßÐÔÏà¹Ø¹ØÏµ½ÏÇ¿£¬bµÄֵΪ0.83
C£®ÏßÐÔÏà¹Ø¹ØÏµ½ÏÇ¿£¬bµÄֵΪ-0.87D£®ÏßÐÔÏà¹Ø¹ØÏµÌ«Èõ£¬ÎÞÑо¿¼ÛÖµ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸