精英家教网 > 高中数学 > 题目详情
1.某几何体的三视图如图所示,则下列数据中不是该几何体的棱长的是(  )
A.2$\sqrt{2}$B.$\sqrt{17}$C.3$\sqrt{2}$D.$\sqrt{33}$

分析 由几何体的三视图知该几何体是三棱锥,分别计算各棱的长,即可得到答案.

解答 解:由三视图可知,该几何体是高为4,底面的斜边为4的等腰直角三角形的三棱锥,
计算可得3$\sqrt{2}$不是该几何体的棱长,
故选:C.

点评 本题考查由三视图求几何体的体积,关键是对几何体正确还原,根据三视图的长度求出几何体的几何元素的长度,再代入对应的公式进行求解,考查了空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)在定义域R内可导且关于x=1对称,当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f(-3),c=f(3),则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已数列{an}满足a1=1,a2=3,an+2=(1+2|cos$\frac{nπ}{2}$|)an+|sin$\frac{nπ}{2}$|,n∈N*
(1)证明:数列:{a2k}{k∈N*}为等比数列;
(2)求数列{an}的通项公式;
(3)bn=$\frac{1}{{a}_{2n}}$+(-1)n-1•($\frac{1}{4}$)${\;}^{{a}_{2n-1}}$,求{bn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A={x|x2-2x+a≥1},B=[a,a+1],若B∩A=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|a≤x≤a+3},B={x|x<-4或x>5}.若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数对(a,b)(a>1,b>1,a,b∈N*),对于?m∈Z,?x,y∈Z,使m=xa+yb成立,则称数对(a,b)为全体整数的一个基底,(x,y)称为m以(a,b)为基底的坐标;
(Ⅰ)给出以下六组数对(2,3),(2,5),(2,6),(3,5),(3,12),(9,17),写出可以作为全体整数基底的数对;
(Ⅱ)若(a,b)是全体整数的一个基底,对于?m∈Z,m以(a,b)为基底的坐标(x,y)有多少个?并说明理由;
(Ⅲ)若(2,m)是全体整数的一个基底,试写出m的所有值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2,椭圆C2以F1,F2为焦点且椭圆C2上的点到F1的距离的最大值为3.
(1)求椭圆的标准方程;
(2)直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2两点,与椭圆C2交于B1、B2两点,当以B1B2为直径的圆经过F1时,求|A1A2|的长;
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作⊙M是否存在定圆⊙N,使得⊙M与⊙N恒相切,若存在,求出⊙N的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C:(x+$\sqrt{3}$)2+y2=16,点D($\sqrt{3}$,0),Q是圆上一动点,DQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(1)求E的方程;
(2)过点P(1,0)的直线l交轨迹E于两个不同的点A,B,△AOB(O是坐标原点)的面积S∈($\frac{3}{5}$,$\frac{4}{5}$),若弦AB的中点为R.求直线OR斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB,角C=$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案