精英家教网 > 高中数学 > 题目详情
10.已知圆C:(x+$\sqrt{3}$)2+y2=16,点D($\sqrt{3}$,0),Q是圆上一动点,DQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(1)求E的方程;
(2)过点P(1,0)的直线l交轨迹E于两个不同的点A,B,△AOB(O是坐标原点)的面积S∈($\frac{3}{5}$,$\frac{4}{5}$),若弦AB的中点为R.求直线OR斜率的取值范围.

分析 (1)由题意|MC|+|MD|=|MC|+|MQ|=|CQ|=4>2$\sqrt{3}$,从而轨迹E是以D($\sqrt{3}$,0),C(-$\sqrt{3}$,0)为焦点,长轴长为4的椭圆,由此能求出E的方程.
(2)设直线AB:x=my+1,由$\left\{\begin{array}{l}{{x}^{2}+4{y}^{2}=4}\\{x=my+1}\end{array}\right.$,得:(4+m2)y2+2my-3=0,由此利用根的判别式、韦达定理、弦长公式,结合已知条件能求出直线OR斜率的取值范围.

解答 解:(1)由题意|MC|+|MD|=|MC|+|MQ|=|CQ|=4>2$\sqrt{3}$,
∴轨迹E是以D($\sqrt{3}$,0),C(-$\sqrt{3}$,0)为焦点,长轴长为4的椭圆,
∴E的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)记A(x1,y1),B(x2,y2),R(x0,y0),
由题意,直线AB的斜率不可能为0,设直线AB:x=my+1,
由$\left\{\begin{array}{l}{{x}^{2}+4{y}^{2}=4}\\{x=my+1}\end{array}\right.$,消去x,得:(4+m2)y2+2my-3=0,
△=4m2+12(4+m2)=16m2+48>0,
${y}_{1}+{y}_{2}=-\frac{2m}{4+{m}^{2}}$,y1y2=-$\frac{3}{4+{m}^{2}}$,
S=$\frac{1}{2}$|OP|•|y1-y2|=$\frac{1}{2}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,
由S∈($\frac{3}{5},\frac{4}{5}$),解得1<m2<6,即m∈(-$\sqrt{6}$,-1)∪(1,$\sqrt{6}$),
∵R(x0,y0)是AB的中点,
∴${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{m}{4+{m}^{2}}$,${x}_{0}=m{y}_{0}+1=\frac{4}{4+{m}^{2}}$,
∴直线OR的斜率k=$\frac{{y}_{0}}{{x}_{0}}=-\frac{m}{4}$∈(-$\frac{\sqrt{6}}{4}$,-$\frac{1}{4}$)∪($\frac{1}{4},\frac{\sqrt{6}}{4}$).
∴直线OR斜率的取值范围是(-$\frac{\sqrt{6}}{4}$,-$\frac{1}{4}$)∪($\frac{1}{4},\frac{\sqrt{6}}{4}$).

点评 本题考查点对点的转变的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在一半径为4的半圆形铁板中,截取一块面积最大的矩形,则其面积是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则下列数据中不是该几何体的棱长的是(  )
A.2$\sqrt{2}$B.$\sqrt{17}$C.3$\sqrt{2}$D.$\sqrt{33}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若圆C:(x-3)2+(y-2)2=1(a>0)与直线y=$\frac{3}{4}$x相交于P、Q两点,则|PQ|=(  )
A.$\frac{2}{5}\sqrt{6}$B.$\frac{3}{5}\sqrt{6}$C.$\frac{4}{5}\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.将圆O:x2+y2=4上各点的纵坐标变为原来的一半 (横坐标不变),得到曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点$F(\sqrt{3},0)$的直线l与曲线C交于A,B两点,N为线段AB的中点,延长线段ON交曲线C于点E.求证:$\overrightarrow{OE}=2\overrightarrow{ON}$的充要条件是|AB|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C的方程为x2+y2-6x-8y=0,则圆心C的坐标为(3,4);过点(3,5)的最短弦的长度为$4\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A(-1,0),B(2,0),动点P满足|$\overrightarrow{PA}$|≥2|$\overrightarrow{PB}$|,直线PA交y轴于点C,则sin∠ACB的最大值为$\frac{3\sqrt{39}}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.三角形ABC的斜二侧直观图如图所示,则三角形ABC的面积为(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如表所示:
分值[0,10)[10,20)[20,30)[30,40)
场数10204030
(1)估计甲在一场比赛中得分大于等于20分的概率.
(2)判断甲、乙两名运动员哪个成绩更稳定.(结论不要求证明)
(3)试利用甲的频率分布直方图估计甲每场比赛的平均得分.

查看答案和解析>>

同步练习册答案