精英家教网 > 高中数学 > 题目详情
18.若圆C:(x-3)2+(y-2)2=1(a>0)与直线y=$\frac{3}{4}$x相交于P、Q两点,则|PQ|=(  )
A.$\frac{2}{5}\sqrt{6}$B.$\frac{3}{5}\sqrt{6}$C.$\frac{4}{5}\sqrt{6}$D.$\sqrt{6}$

分析 求出圆C圆心C(3,2),半径r=1,再求出圆心C(3,2)到直线y=$\frac{3}{4}$x的距离d,由此利用勾股定理能求出|PQ|的长.

解答 解:∵圆C:(x-3)2+(y-2)2=1的圆心C(3,2),半径r=1,
圆心C(3,2)到直线y=$\frac{3}{4}$x的距离d=$\frac{|\frac{3}{4}×3-2|}{\sqrt{\frac{9}{16}+1}}$=$\frac{1}{5}$,
∵圆C:(x-3)2+(y-2)2=1(a>0)与直线y=$\frac{3}{4}$x相交于P、Q两点,
∴|PQ|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{1-\frac{1}{25}}$=$\frac{4\sqrt{6}}{5}$.
故选:C.

点评 本题考查弦长的求法,是中档题,解题时要认真审题,注意圆的性质和点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示,设小矩形的长、宽各为a,b,现把四个同样的矩形拼接成正方形后,分析其中阴影部分矩形面积之和与正方形面积之间的关系,并用不等式表达出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A={x|x2-2x+a≥1},B=[a,a+1],若B∩A=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数对(a,b)(a>1,b>1,a,b∈N*),对于?m∈Z,?x,y∈Z,使m=xa+yb成立,则称数对(a,b)为全体整数的一个基底,(x,y)称为m以(a,b)为基底的坐标;
(Ⅰ)给出以下六组数对(2,3),(2,5),(2,6),(3,5),(3,12),(9,17),写出可以作为全体整数基底的数对;
(Ⅱ)若(a,b)是全体整数的一个基底,对于?m∈Z,m以(a,b)为基底的坐标(x,y)有多少个?并说明理由;
(Ⅲ)若(2,m)是全体整数的一个基底,试写出m的所有值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2,椭圆C2以F1,F2为焦点且椭圆C2上的点到F1的距离的最大值为3.
(1)求椭圆的标准方程;
(2)直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2两点,与椭圆C2交于B1、B2两点,当以B1B2为直径的圆经过F1时,求|A1A2|的长;
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作⊙M是否存在定圆⊙N,使得⊙M与⊙N恒相切,若存在,求出⊙N的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点(-2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2$\sqrt{3}$,则直线l的斜率为(  )
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±1D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C:(x+$\sqrt{3}$)2+y2=16,点D($\sqrt{3}$,0),Q是圆上一动点,DQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(1)求E的方程;
(2)过点P(1,0)的直线l交轨迹E于两个不同的点A,B,△AOB(O是坐标原点)的面积S∈($\frac{3}{5}$,$\frac{4}{5}$),若弦AB的中点为R.求直线OR斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x+7y-5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于任意正整数n,猜想2n-1与(n+1)2的大小关系,并给出证明.

查看答案和解析>>

同步练习册答案