精英家教网 > 高中数学 > 题目详情
11.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB,角C=$\frac{π}{6}$.

分析 根据正弦定理得c2=2$\sqrt{3}$ab,代入余弦定理cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$即可得出关于cosC的方程,解出cosC即可得出C.

解答 解:∵sin2C=2$\sqrt{3}$sinAsinB,∴c2=2$\sqrt{3}$ab.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{6abcosC-2\sqrt{3}ab}{2ab}$=3cosC-$\sqrt{3}$,
解得cosC=$\frac{\sqrt{3}}{2}$.
∴C=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了正弦定理,余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则下列数据中不是该几何体的棱长的是(  )
A.2$\sqrt{2}$B.$\sqrt{17}$C.3$\sqrt{2}$D.$\sqrt{33}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A(-1,0),B(2,0),动点P满足|$\overrightarrow{PA}$|≥2|$\overrightarrow{PB}$|,直线PA交y轴于点C,则sin∠ACB的最大值为$\frac{3\sqrt{39}}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.三角形ABC的斜二侧直观图如图所示,则三角形ABC的面积为(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若方程x2+y2+2λx+2λy+2λ2-λ+1=0表示圆,则λ的取值范围是(  )
A.(1,+∞)B.[$\frac{1}{5}$,1]C.(1,+∞)∪(-∞,$\frac{1}{5}$)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N+),则该数列的前10项的乘积a1•a2•a3…a10等于(  )
A.3B.1C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线$\hat y$=$\hat b$x+$\hat a$近似地刻画其相关系,根据图形,以下结论最有可能成立的是(  )
A.线性相关关系较强,b的值为3.25B.线性相关关系较强,b的值为0.83
C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如表所示:
分值[0,10)[10,20)[20,30)[30,40)
场数10204030
(1)估计甲在一场比赛中得分大于等于20分的概率.
(2)判断甲、乙两名运动员哪个成绩更稳定.(结论不要求证明)
(3)试利用甲的频率分布直方图估计甲每场比赛的平均得分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b都是正数,且a+b-2a2b2-6=0,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4$\sqrt{3}$,此时ab的值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案