分析 根据正弦定理得c2=2$\sqrt{3}$ab,代入余弦定理cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$即可得出关于cosC的方程,解出cosC即可得出C.
解答 解:∵sin2C=2$\sqrt{3}$sinAsinB,∴c2=2$\sqrt{3}$ab.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{6abcosC-2\sqrt{3}ab}{2ab}$=3cosC-$\sqrt{3}$,
解得cosC=$\frac{\sqrt{3}}{2}$.
∴C=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.
点评 本题考查了正弦定理,余弦定理的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\sqrt{17}$ | C. | 3$\sqrt{2}$ | D. | $\sqrt{33}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [$\frac{1}{5}$,1] | C. | (1,+∞)∪(-∞,$\frac{1}{5}$) | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 线性相关关系较强,b的值为3.25 | B. | 线性相关关系较强,b的值为0.83 | ||
| C. | 线性相关关系较强,b的值为-0.87 | D. | 线性相关关系太弱,无研究价值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分值 | [0,10) | [10,20) | [20,30) | [30,40) |
| 场数 | 10 | 20 | 40 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com