精英家教网 > 高中数学 > 题目详情
16.若数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N+),则该数列的前10项的乘积a1•a2•a3…a10等于(  )
A.3B.1C.$\frac{3}{2}$D.$\frac{2}{3}$

分析 可判断数列{an}的周期为4,从而求得.

解答 解:∵a1=$\frac{1}{2}$,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,
∴a2=$\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$=3,
a3=$\frac{1+3}{1-3}$=-2,
a4=-$\frac{1}{3}$,
a5=$\frac{1}{2}$,
故数列{an}的周期为4,
∵a1•a2•a3•a4=1,
∴a1•a2•a3…a10=a1•a2=$\frac{3}{2}$,
故选C.

点评 本题考查了递推公式的应用及数列的性质的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若数对(a,b)(a>1,b>1,a,b∈N*),对于?m∈Z,?x,y∈Z,使m=xa+yb成立,则称数对(a,b)为全体整数的一个基底,(x,y)称为m以(a,b)为基底的坐标;
(Ⅰ)给出以下六组数对(2,3),(2,5),(2,6),(3,5),(3,12),(9,17),写出可以作为全体整数基底的数对;
(Ⅱ)若(a,b)是全体整数的一个基底,对于?m∈Z,m以(a,b)为基底的坐标(x,y)有多少个?并说明理由;
(Ⅲ)若(2,m)是全体整数的一个基底,试写出m的所有值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x+7y-5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an},{bn}满足a1=1,an+1=2an+1,b1=4,bn-bn-1=an+1(n≥2).
(Ⅰ)求证:数列{an+1}是等比数列;
(Ⅱ)求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB,角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在下列命题中,不是公理的是(  )
A.经过两条相交直线有且只有一个平面
B.平行于同一直线的两条直线互相平行
C.如果一条直线上的两点在一个平面内,那么这条直线在此平面内
D.如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于任意正整数n,猜想2n-1与(n+1)2的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,平面区域W由满足x2+y2≤5的点的(x,y)构成.
(Ⅰ)若x∈Z,y∈Z,在W中任取点M(x,y),求点M位于第四象限的概率;
(Ⅱ)若x,y∈R,在W中任取点M(x,y),求y+x>$\frac{\sqrt{10}}{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin(2x+$\frac{π}{3}$).
(1)求函数f(x)的周期;
(2)求函数f(x)的单调递增区间,单调递减区间;
(3)若x∈[0,$\frac{π}{2}$],求f(x)的值域;
(4)求f(x)的对称轴方程,及对称中心.

查看答案和解析>>

同步练习册答案