精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3-ax
在区间(0,1)上是减函数,则实数a的取值范围是(  )
A、(0,+∞)
B、(0,
1
3
]
C、(0,3]
D、(0,3)
分析:根据复合函数单调性的判定方法,同增异减,和一次函数y=kx+b(k≠0),知当k>0时,函数f(x)在R上是增函数,当k<0时,函数f(x)在R上是减函数;由已知函数f(x)=
3-ax
在区间(0,1)上是减函数,可知y=3-ax在区间(0,1)上是减函数,a>0,注意函数的定义域.
解答:解:∵函数f(x)=
3-ax
在区间(0,1)上是减函数,
∴y=3-ax在区间(0,1)上是减函数,
∴a>0,
又∵3-ax≥0,即a≤
3
x
,x∈(0,1)
∴0<a≤3.
故选C.
点评:考查简单的复合函数和基本初等函数的单调性,注意掌握反比例函数、一次函数、二次函数、指数函数、对数函数等的单调性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案