精英家教网 > 高中数学 > 题目详情
已知F1、F2分别是双曲线的左、右焦点,P为双曲线右支上的任意一点且,则双曲线离心率的取值范围是(    )
A.(1,2]B.[2 +)C.(1,3]D.[3,+)
C

试题分析:由定义知:|PF1|-|PF2|=2a,所以|PF1|=2a+|PF2|,+4a+|PF2| ≥8a,当且仅当=|PF2|,即|PF2|=2a时取得等号,设P(x0,y0) (x0a),由焦半径公式得:|PF2|=-ex0-a=2a,,又双曲线的离心率e>1,∴e∈(1,3],故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三点P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)设点P、F1、F2关于直线y=x的对称点分别为,求以为焦点且过点的双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右焦点,椭圆的离心率
(I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,曲线上任意一点分别与点连线的斜率的乘积为
(Ⅰ)求曲线的方程;
(Ⅱ)设直线轴、轴分别交于两点,若曲线与直线没有公共点,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知O为坐标原点,P是曲线上到直线距离最小的点,且直线OP是双曲线 的一条渐近线。则的公共点个数是(  )
A.2B.1
C.0D.不能确定,与的值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等边中,若以为焦点的椭圆经过点,则该椭圆的离心率为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线和⊙O∶相离,则过点的直线与椭圆的交点个数为(    )
A.至多一个B. 2个C. 1个   D.0个

查看答案和解析>>

同步练习册答案