精英家教网 > 高中数学 > 题目详情
已知-
1
2
<a<0,A=1+a2,B=1-a2,C=
1
1+a
,D=
1
1-a
,试比较A,B,C,D的大小.
考点:不等式比较大小
专题:不等式的解法及应用
分析:利用“作差法”和不等式的基本性质即可得出.
解答: 解:①∵-
1
2
<a<0,∴-a>0,1+a>0,1+a+a2=(a+
1
2
)2+
3
4
>0,
∴C-A=
1
1+a
-(1+a2)
=
-a(1+a+a2)
1+a
>0,∴C>A.
②∵A-B=(1+a2)-(1-a2)=2a2>0,∴A>B.
③∵-
1
2
<a<0,∴-a>0,1-a>0,1+a-a2=
5
4
-(a-
1
2
)2
>0.
∴B-D=1-a2-
1
1-a
=
-a(1+a-a2)
1-a
>0,∴B>D.
综上可得:C>A>B>D.
点评:本题考查了“作差法”和不等式的基本性质,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
8
+
y2
4
=1.
(1)直线l:y=x+m与椭圆E有两个公共点,求实数m的取值范围.
(2)以椭圆E的焦点F1、F2为焦点,经过直线l′:x+y=9上一点P作椭圆C,当C的长轴最短时,求C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)某同学在一次研究性学习中发现,以下五个式子的值都等于一个常数.
sin213°+cos217°-sin13°cos17°,sin215°+cos215°-sin15°cos15°,sin218°+cos212°-sin18°cos12°,sin2(-18°)+cos248°-sin(-18°)cos48°,sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数.
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
(Ⅱ)求函数y=2+2sinxcosx+sinx+cosx,x∈[-
π
2
π
2
]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+4x.
(1)当a<-2时,函数f(x)在区间[a,a+4]上的最大值与最小值的差为9,求a的值;
(2)若函数f(x)满足:对于任意在区间D上的实数x都有f(x+1)>mf(x),则称函数f(x)为区间D上周期为1的m倍递增函数.已知函数f(x)为区间[0,4]上是周期为1的m倍递增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+k,是否存在实数k,当a+b≤2时,使得函数f(x)的定义域、值域都是[a,b],若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+
2
x
(a∈R).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数y=f(x)在定义域内是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π+α)=-
1
3
,α是第二象限角,分别求下列各式的值:
(Ⅰ)cos(2π-α);
(Ⅱ)tan(α-7π).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,f(x)的定义域为(-∞,+∞).当x<0时,f(x)=
ln(-ex)
x
.(e为自然对数的底数).
(1)若函数f(x)在区间(a,a+
1
3
)(a>0)上存在极值点,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3
3
+
mx2+(m+n)x+1
2
的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),点P(m,n)表示的平面区域为D,若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案