精英家教网 > 高中数学 > 题目详情
如图:在三棱锥S-ABC中,已知点D、E、F分别为棱AC、SA、SC的中点.
(Ⅰ)求证:EF平面ABC;
(Ⅱ)若SA=SC,BA=BC,求证:平面SBD⊥平面ABC.
精英家教网

精英家教网
证明:(Ⅰ)∵EF是△SAC的中位线,
∴EFAC.又∵EF?平面ABC,AC?平面ABC,
∴EF平面ABC.(6分)
(Ⅱ)∵SA=SC,AD=DC,∴SD⊥AC.
∵BA=BC,AD=DC,∴BD⊥AC.
又∵SD?平面SBD,BD?平面SBD,SD∩DB=D,
∴AC⊥平面SBD,又∵AC?平面ABC,
∴平面SBD⊥平面ABC.(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求证:AB⊥BC;
(2)若设二面角S-BC-A为45°,SA=BC,求二面角A-SC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,在三棱锥S-ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

同步练习册答案