扇形AOB中心角为60°,所在圆半径为
,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;
(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=
;
试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
![]()
最大值![]()
【解析】
试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如
化为
,可进一步研究函数的周期、单调性、最值和对称性.
试题解析: 解(1)在
中,设
,则![]()
又![]()
![]()
![]()
![]()
![]()
当
即
时,![]()
(Ⅱ)令
与
的交点为
,
的交点为
,则
,
于是
,又![]()
![]()
当
即
时,
取得最大值
.
,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式![]()
![]()
考点:把实际问题转化为三角函数求最值问题.
科目:高中数学 来源:2016届山东省济宁市高一3月质量检测数学试卷(解析版) 题型:选择题
设有一个直线回归方程为
,则变量
增加一个单位时 ( )
A.
平均增加1.5个单位 B.
平均增加2个单位
C.
平均减少1.5个单位 D.
平均减少2个单位
查看答案和解析>>
科目:高中数学 来源:2016届山东省高一下学期期末模拟检测一数学试卷(解析版) 题型:选择题
某校五四演讲比赛中,七位评委为一选手打出的分数如下:
90 86 90 97 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2016届山东省德州市高一下学期期末考试数学试卷(解析版) 题型:填空题
有下列说法:
(1)函数y=﹣
的最小正周期是π;
(2)终边在
轴上的角的集合是
;
(3)函数
的一个对称中心为![]()
(4)设△ABC是锐角三角形,则点
(
,cos(A+B))在第四象限则正确命题的序号是 _________ .
查看答案和解析>>
科目:高中数学 来源:2016届山东省德州市高一下学期期末考试数学试卷(解析版) 题型:选择题
如图是某青年歌手大奖赛是七位评委为甲、乙两名选手打分的茎叶图(其中m是数字0~9中的一个),去掉一个最高分和一个最低分之后,甲、乙两名选手的方差分别是a1和a2,则( ).
![]()
A.a1>a2 B.a1<a2
C.a1=a2 D.a1,a2的大小与m的值有关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com