精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{{e}^{2x}+1}{{e}^{2x}-1}$,则y=f(x)的大致图象为(  )
A.B.C.D.

分析 化简解析式,利用函数的单调性,判断函数的图象即可.

解答 解:函数f(x)=$\frac{{e}^{2x}+1}{{e}^{2x}-1}$=1+$\frac{2}{{e}^{2x}-1}$,因为函数y=e2x是增函数,所以函数f(x)=$\frac{{e}^{2x}+1}{{e}^{2x}-1}$,x>0时是减函数,
可知函数的图象只有D满足题意.
故选:D.

点评 本题考查函数的图象的判断,函数的单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.过点P(1,0)与抛物线y=x2有且只有一个公共点的直线共有(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线方程为$y=\frac{1}{4}{x^2}$,则其准线方程为y=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(2016-x)(1+x)2017的展开式中,x2017的系数为-1.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的周期为2的函数,满足f(2+x)=f(2-x),在[-3,-2]上是减函数,若A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设D、E、F分别为△ABC三边BC、CA、AB的中点,则$\overrightarrow{DA}$+2$\overrightarrow{EB}$+3$\overrightarrow{FC}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AD}$B.$\frac{3}{2}$$\overrightarrow{AD}$C.$\frac{1}{2}$$\overrightarrow{AC}$D.$\frac{3}{2}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{2}$,1),且与直线$\sqrt{2}$x+2y-4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{2π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$f(x)=\left\{{\begin{array}{l}{{2^x}-2,x≥0}\\{-{x^2}+3,x<0}\end{array}}\right.$,若f(a)=2,则a的取值为(  )
A.2B.-1或2C.±1或2D.1或2

查看答案和解析>>

同步练习册答案