精英家教网 > 高中数学 > 题目详情
2.计算1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=(  )
A.37-$\frac{1}{{2}^{8}}$B.36C.36-$\frac{1}{{2}^{8}}$D.35

分析 1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=(1+2+…+8)+$\frac{1}{2}+\frac{1}{4}$+…+$\frac{1}{{2}^{8}}$,利用等差数列与等比数列的求和公式即可得出.

解答 解:1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=(1+2+…+8)+$\frac{1}{2}+\frac{1}{4}$+…+$\frac{1}{{2}^{8}}$=$\frac{8×(1+8)}{2}$+$\frac{\frac{1}{2}[1-(\frac{1}{2})^{8}]}{1-\frac{1}{2}}$=37-$\frac{1}{{2}^{8}}$.
故选:A.

点评 本题考查了等差数列与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且直线${l_1}:\frac{x}{a}+\frac{y}{b}=1$被椭圆C1截得的弦长为$\sqrt{7}$.
(I)求椭圆C1的方程;
(II)以椭圆C1的长轴为直径作圆C2,过直线l2:y=4上的动点M作圆C2的两条切线,设切点为A,B,若直线AB与椭圆C1交于不同的两点C,D,求|CD|•|AB|的取信范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α为锐角,sinα=$\frac{3}{5}$,则cosα=(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{16}{25}$D.$-\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知y=Acos(ωx+φ)的图象过点P($\frac{π}{12},0$),图象上与点P最近的一个顶点是Q($\frac{π}{3},3$)
(1)求函数的解析式;    
(2)求函数的单调减区间;   
(3)求使y≥0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a=({\sqrt{3}sinx,cosx})$,$\overrightarrow b=({cosx,cosx})$,f(x)=2$\overrightarrow a•\overrightarrow b+2m-1({x,m∈R})$
(1)当x∈R时,f(x)有最大值6,求m的值;
(2)在(1)的条件下,求f(x)单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,已知a=3,b=5,c=$\sqrt{19}$,则最大角与最小角的和为(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=${∫}_{0}^{1}$xdx,b=1-${∫}_{0}^{1}$$\sqrt{x}$dx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,过点A(1,2)作抛物线的弦AP,AQ,若AP⊥AQ,证明:直线PQ过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.P是抛物线y=x2上的动点,Q是直线2x-y-4=0上的动点,则|PQ|的最小值为(  )
A.$\frac{3\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.2D.4

查看答案和解析>>

同步练习册答案