精英家教网 > 高中数学 > 题目详情
7.在△ABC中,已知a=3,b=5,c=$\sqrt{19}$,则最大角与最小角的和为(  )
A.90°B.120°C.135°D.150°

分析 利用余弦定理表示出cosC,将三边长代入求出cosC的值,确定出C的度数,即可求出A+B的度数.

解答 解:∵△ABC中,a=3,b=5,c=$\sqrt{19}$,则最大角为B,最小角为A,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{9+25-19}{2×3×5}$=$\frac{1}{2}$,
∴C=60°,
∴A+B=120°,
则△ABC中的最大角与最小角之和为120°.
故选:B.

点评 此题考查了余弦定理在解三角形中的应用,熟练掌握余弦定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如果a∩b=M,a∥平面β,则b与β的位置关系是平行或相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cos2(x-$\frac{π}{6}$)-cos2x,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求y=f(x)在区间$[{-\frac{π}{3},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两圆相交于两点(k,1)和(1,3),两圆的圆心都在直线x-y+$\frac{c}{2}$=0上,则k+c=(  )
A.-1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.计算1$\frac{1}{2}$$+2\frac{1}{4}$+3$\frac{1}{8}$+…$+8\frac{1}{{2}^{8}}$=(  )
A.37-$\frac{1}{{2}^{8}}$B.36C.36-$\frac{1}{{2}^{8}}$D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z=a-2i的实部与虚部相等,则实数a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.将ρ=2cosθ-4sinθ化为直角坐标方程x2+y2-2x+4y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:
记忆能力x46810
识图能力y3568
由表中数据,求得线性回归方程为,$\stackrel{∧}{y}$=$\frac{4}{5}$x+$\stackrel{∧}{a}$,若某儿童的记忆能力为11时,则他的识图能力约为(  )
A.8.5B.8.7C.8.9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z为纯虚数,且z(2+i)=1+ai,则实数a的值为-2.

查看答案和解析>>

同步练习册答案