精英家教网 > 高中数学 > 题目详情
16.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:
记忆能力x46810
识图能力y3568
由表中数据,求得线性回归方程为,$\stackrel{∧}{y}$=$\frac{4}{5}$x+$\stackrel{∧}{a}$,若某儿童的记忆能力为11时,则他的识图能力约为(  )
A.8.5B.8.7C.8.9D.9

分析 由表中数据计算$\overline{x}$、$\overline{y}$,根据线性回归方程过样本中心点求出$\stackrel{∧}{a}$,
写出线性回归方程,利用回归方程计算x=11时$\stackrel{∧}{y}$的值.

解答 解:由表中数据,计算$\overline{x}$=$\frac{1}{4}$×(4+6+8+10)=7,
$\overline{y}$=$\frac{1}{4}$×(3+5+6+8)=5.5,
且线性回归方程$\stackrel{∧}{y}$=$\frac{4}{5}$x+$\stackrel{∧}{a}$过样本中心点($\overline{x}$,$\overline{y}$),
∴$\stackrel{∧}{a}$=5.5-$\frac{4}{5}$×7=-0.1=-$\frac{1}{10}$,
∴线性回归方程为$\stackrel{∧}{y}$=$\frac{4}{5}$x-$\frac{1}{10}$;
当x=11时,$\stackrel{∧}{y}$=$\frac{4}{5}$×11-$\frac{1}{10}$=8.7,
即某儿童的记忆能力为11时,他的识图能力约为8.7.
故选:B.

点评 本题考查了线性回归方程过样本中心点的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30]20.05
合计M1
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,已知a=3,b=5,c=$\sqrt{19}$,则最大角与最小角的和为(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.曲线$y=\frac{sinx}{x}$在点M(π,0)处的切线方程为(  )
A.y=$\frac{1}{π}x-1$B.y=$-\frac{1}{π}x+1$C.y=$\frac{1}{π}x+1$D.y=$-\frac{1}{π}x-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,过点A(1,2)作抛物线的弦AP,AQ,若AP⊥AQ,证明:直线PQ过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.圆ρ=r与圆ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直线的方程为$\sqrt{2}$ρ(sinθ+cosθ)=-r.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在梯形ABCD中,AD∥BC,AD=2,BC=3,若$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$(m,n∈R),则$\frac{m}{n}$=(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an},满足a1=2,an=3an-1+4(n≥2),则an=4×3n-1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,…,$\frac{{S}_{15}}{{a}_{15}}$中最大的项为(  )
A.$\frac{{S}_{7}}{{a}_{7}}$B.$\frac{{S}_{8}}{{a}_{8}}$C.$\frac{{S}_{9}}{{a}_{9}}$D.$\frac{{S}_{10}}{{a}_{10}}$

查看答案和解析>>

同步练习册答案