精英家教网 > 高中数学 > 题目详情
8.已知在梯形ABCD中,AD∥BC,AD=2,BC=3,若$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$(m,n∈R),则$\frac{m}{n}$=(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{3}$D.3

分析 利用平面向量的三角形法以及平面向量基本定理求出m,n.

解答 解:,如图过E作DE∥AB,交BC于E.
∵AD∥BC,AD=2,BC=3,∴EC=1,
由$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$=$\overrightarrow{CE}+\overrightarrow{ED}=-\frac{1}{3}\overrightarrow{BC}+\overrightarrow{BA}$可得$m=-\frac{1}{3},n=1$.
∴$\frac{m}{n}=-3$,
故选:A.

点评 本题考查了平面向量的三角形法则和平面向量基本定理;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cos2(x-$\frac{π}{6}$)-cos2x,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求y=f(x)在区间$[{-\frac{π}{3},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.将ρ=2cosθ-4sinθ化为直角坐标方程x2+y2-2x+4y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:
记忆能力x46810
识图能力y3568
由表中数据,求得线性回归方程为,$\stackrel{∧}{y}$=$\frac{4}{5}$x+$\stackrel{∧}{a}$,若某儿童的记忆能力为11时,则他的识图能力约为(  )
A.8.5B.8.7C.8.9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的中心在原点,焦点在y轴上且长轴长为4,短轴长为2,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$ (t为参数).
(1)求椭圆方程;
(2)当m为何值时,直线l被椭圆截得的弦长为$\sqrt{6}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a∈{2,4},b∈{1,3},函数f(x)=$\frac{1}{2}$ax2+bx+1,则f(x)在区间(-∞,-1]上是减函数的概率(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆C1:x2+( y-1)2=1和圆C2:(x-3)2+(y-4)2=25的位置关系为(  )
A.相交B.内切C.外切D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z为纯虚数,且z(2+i)=1+ai,则实数a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=f′($\frac{π}{3}$)sinx+x,则f′(π)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

同步练习册答案