精英家教网 > 高中数学 > 题目详情
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且∠EDF=∠C,若CE:BE=3:2,DE=3,EF=2.则PA=
 
考点:弦切角
专题:立体几何
分析:利用△DEF∽△CED与已知可得EC的长,进而得到BE,利用相交弦定理可得AE•ED=EB•CE,得到AE.再利用AP∥CD,可得△AEP∽△FED,得到PE,进而得到PB,再利用切割线定理可得PA2=PB•PC即可得出.
解答: 解:在△DEF和△CED中,∵∠EDF=∠C,∠DEF公用,∴△DEF∽△CED,∴
DE
EC
=
FE
ED

∵DE=3,EF=2,∴EC=
DE2
FE
=
32
2
=
9
2

∵CE:BE=3:2,∴BE=3.
由相交弦定理可得AE•ED=EB•CE,∴AE=
9
2
3
=
9
2

∵AP∥CD,∴∠P=∠C,
∴∠P=∠EDF.
∴△AEP∽△FED,∴
AE
EF
=
PE
ED

PE=
AE•ED
EF
=
9
2
×3
2
=
27
4

∴PB=PE-EB=
27
4
-3=
15
4

∵PA与⊙O相切,∴PA2=PB•PC=
15
4
×(
15
4
+3+
9
2
)
=
15×45
4×4

∴PA=
15
3
4

故答案为:
15
3
4
点评:本题综合考查了相似三角形的判定与性质、相交弦定理、切割线定理、平行线的性质等基础知识与基本技能方法,考查了分析问题和解决问题的能力,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(Ⅰ)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求至少有一个是乙车床加工的概率;
(Ⅱ)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是递增的等差数列,a1=2,Sn为其前n项和,若a1,a2,a6成等比数列,则S5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如图所示.该路段限速标志牌提示机动车辆正常行驶速度为60km/h~120km/h,则该时段内过往的这100辆机动车中属非正常行驶的有
 
辆,图中的x值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x2+y2-1≤0
y≥0
表示的平面区域为M,不等式组
-t≤x≤t
0≤y≤
1-t2
表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图已知圆的半径为10,其内接三角形ABC的内角A、B分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC内的概率为(  )
A、
3+
3
16π
B、
3+
3
C、
3+
3
D、
16π
3+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|(
1
2
x<1},B={x|x2-3x-4>0},则A∩B等于(  )
A、{x|x>0}
B、{x|x<-1或x>0}
C、{x|x>4}
D、{x|-1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,它在[0,+∞)上是减函数.则下列各式一定成立的是(  )
A、f(0)<f(6)
B、f(-3)>f(2)
C、f(-1)>f(3)
D、f(-2)<f(-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢 不喜欢 合计
大于40岁 20 5 25
20岁至40岁 10 20 30
合计 30 25 55
(Ⅰ)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案