【题目】在直角坐标系xOy中,曲线C1的参数方程为
(α为参数),直线C2的方程为y=
,以O为极点,以x轴正半轴为极轴建立极坐标系,
(1)求曲线C1和直线C2的极坐标方程;
(2)若直线C2与曲线C1交于A,B两点,求
+
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的最大值及此时围成的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下关于命题的说法正确的有(填写所有正确命题的序号).
①“若
,则函数
(
,且
)在其定义域内是减函数”是真命题;
②命题“若
,则
”的否命题是“若
,则
”;
③命题“若
,
都是偶数,则
也是偶数”的逆命题为真命题;
④命题“若
,则
”与命题“若
,则
”等价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为
,直线
与抛物线相交于不同的
,
两点.
(1)求抛物线的标准方程;
(2)如果直线
过抛物线的焦点,求
的值;
(3)如果
,直线
是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是东西方向的公路北侧的边缘线,某公司准备在
上的一点
的正北方向的
处建一仓库,并在公路同侧建造一个正方形无顶中转站
(其中边
在
上),现从仓库
向
和中转站分别修两条道路
,
,已知
,且
,设
,
.
(1)求
关于
的函数解析式;
(2)如果中转站四周围墙(即正方形周长)造价为
万元
,两条道路造价为
万元
,问:
取何值时,该公司建中转围墙和两条道路总造价
最低?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com