【题目】如图,
是东西方向的公路北侧的边缘线,某公司准备在
上的一点
的正北方向的
处建一仓库,并在公路同侧建造一个正方形无顶中转站
(其中边
在
上),现从仓库
向
和中转站分别修两条道路
,
,已知
,且
,设
,
.
(1)求
关于
的函数解析式;
(2)如果中转站四周围墙(即正方形周长)造价为
万元
,两条道路造价为
万元
,问:
取何值时,该公司建中转围墙和两条道路总造价
最低?
![]()
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣x2﹣lnx存在极值,若这些极值的和大于5+ln2,则实数a的取值范围为( )
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(α为参数),直线C2的方程为y=
,以O为极点,以x轴正半轴为极轴建立极坐标系,
(1)求曲线C1和直线C2的极坐标方程;
(2)若直线C2与曲线C1交于A,B两点,求
+
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其函数图象的相邻两条对称轴之间的距离为
.
(1)求函数
的解析式及对称中心;
(2)将函数
的图象向左平移
个单位长度,再向上平移
个单位长度得到函数
的图象,若关于
的方程
在区间
上有两个不相等的实根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
分别是Δ
的边
的中点,连接
.现将
沿
折叠至Δ
的位置,连接
.记平面
与平面
的交线为
,二面角
大小为
.![]()
![]()
(1)证明: ![]()
(2)证明: ![]()
(3)求平面
与平面
所成锐二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,
,且经过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)
的顶点都在椭圆
上,其中
关于原点对称,试问
能否为正三角形?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合
…,
…,
,对于
…,
,B=(
…,
,定义A与B的差为
…
,A与B之间的距离为
.
(Ⅰ)若
,求
;
(Ⅱ)证明:对任意
,有
(i)
,且
;
(ii)
三个数中至少有一个是偶数;
(Ⅲ)对于
…
…
,再定义一种A与B之间的运算,并写出两条该运算满足的性质(不需证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com