【题目】已知 ,设命题 :指数函数 ≠ 在 上单调递增.命题 :函数 的定义域为 .若“ ”为假,“ ”为真,求 的取值范围.
科目:高中数学 来源: 题型:
【题目】以下关于命题的说法正确的有(填写所有正确命题的序号).
①“若 ,则函数 ( ,且 )在其定义域内是减函数”是真命题;
②命题“若 ,则 ”的否命题是“若 ,则 ”;
③命题“若 , 都是偶数,则 也是偶数”的逆命题为真命题;
④命题“若 ,则 ”与命题“若 ,则 ”等价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建一仓库,并在公路同侧建造一个正方形无顶中转站(其中边在上),现从仓库向和中转站分别修两条道路,,已知,且,设,.
(1)求关于的函数解析式;
(2)如果中转站四周围墙(即正方形周长)造价为万元,两条道路造价为万元,问:取何值时,该公司建中转围墙和两条道路总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥 中,底面 为梯形, 底面 , .过 作一个平面 使得 平面 .
(1)求平面 将四棱锥 分成两部分几何体的体积之比;
(2)若平面 与平面 之间的距离为 ,求直线 与平面 所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦值;
(Ⅲ)求点A到平面PCD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆 的方程为 ,直线 的方程为 ,点 在直线 上,过点 作圆 的切线 ,切点为 .
(1)若点 的坐标为 ,求切线 的方程;
(2)求四边形 面积的最小值;
(3)求证:经过 三点的圆必过定点,并求出所有定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com