【题目】已知函数f(x)=ax﹣x2﹣lnx存在极值,若这些极值的和大于5+ln2,则实数a的取值范围为( )
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)
【答案】B
【解析】解:f(x)=ax﹣x2﹣lnx,x∈(0,+∞), 则f′(x)=a﹣2x﹣
=﹣
,
∵函数f(x)存在极值,∴f′(x)=0在(0,+∞)上有根,
即2x2﹣ax+1=0在(0,+∞)上有根,∴△=a2﹣8≥0,
显然当△=0时,F(x)无极值,不合题意;
∴方程必有两个不等正根,记方程2x2﹣ax+1=0的两根为x1 , x2 , x1+x2=
,x1x2=
,
f(x1),f(x2)是函数F(x)的两个极值,
由题意得,f(x1)+f(x2)=a(x1+x2)﹣(x12+x22)﹣(lnx1+lnx2)
=
﹣
+1﹣ln
>5﹣ln
,
化简解得,a2>16,满足△>0,
又x1+x2=
>0,即a>0,
∴∴a的取值范围是(4,+∞),
故选:B.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数
的极值的方法是:(1)如果在
附近的左侧
,右侧
,那么
是极大值(2)如果在
附近的左侧
,右侧
,那么
是极小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,过对角线
的一个平面交
于点
,交
于
.
![]()
①四边形
一定是平行四边形;
②四边形
有可能是正方形;
③四边形
在底面
内的投影一定是正方形;
④四边形
有可能垂直于平面
.
以上结论正确的为_______________.(写出所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的最大值及此时围成的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,右顶点为
,离心率为
,直线
:
与椭圆
相交于不同的两点
,
,过
的中点
作垂直于
的直线
,设
与椭圆
相交于不同的两点
,
,且
的中点为
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设原点
到直线
的距离为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是东西方向的公路北侧的边缘线,某公司准备在
上的一点
的正北方向的
处建一仓库,并在公路同侧建造一个正方形无顶中转站
(其中边
在
上),现从仓库
向
和中转站分别修两条道路
,
,已知
,且
,设
,
.
(1)求
关于
的函数解析式;
(2)如果中转站四周围墙(即正方形周长)造价为
万元
,两条道路造价为
万元
,问:
取何值时,该公司建中转围墙和两条道路总造价
最低?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com