精英家教网 > 高中数学 > 题目详情
椭圆C1
x2
a2
+
y2
b2
=1
的左准线为l,左、右焦点分别为F1、F2,抛物线C2的准线为l,焦点为F2,C1与C2的一个交点为P,线段PF2的中点为G,O是坐标原点,则
|OF1|
|PF1|
-
|OG|
|PF2|
的值为(  )
分析:P到椭圆的左准线的距离设为d,先利用椭圆的第二定义求得PF1|=ed,利用抛物线的定义可知|PF2|=d,最后根据椭圆的定义可知|PF2|+|PF1|=2a求得d,则|PF2|可得,最后化简
|OF1|
|PF1|
-
|OG|
|PF2|
即得.
解答:解:设椭圆的离心率为e,P到椭圆的左准线的距离设为d,
则|PF1|=ed,|PF2|+|PF1|=2a,又|PF2|=d,
∴d+ed=2a,
∴d=|PF2|=
2a
1+e
,|PF1|=
2ae
1+e

又线段PF2的中点为G,O是坐标原点,
∴|OG|=
1
2
|PF1|=
ae
1+e

|OF1|
|PF1|
-
|OG|
|PF2|
=
c
2ae
1+e
-
ae
1+e
2a
1+e
=
1+e
2
-
e
2
=
1
2

故选D.
点评:本题主要考查了椭圆的简单性质,解题的关键是灵活利用椭圆和抛物线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,-
4
5
),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线C2y2=4x的焦点重合,椭圆C1与抛物线C2在第一象限的交点为P,|PF2|=
5
3
,求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•三门峡模拟)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4,离心率为
1
2
,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程;
(Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2
NF2
共线,
PF2
QF2
共线,且
PF2
MF2
=0,求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
A2
+
y2
B2
=1(A>B>0)
和双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有相同的焦点F1、F2,2c是它们的共同焦距,且它们的离心率互为倒数,P是它们在第一象限的交点,当cos∠F1PF2=60°时,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案