精英家教网 > 高中数学 > 题目详情
5.已知$\overrightarrow m=({sinA,cosA}),\overrightarrow n=({\sqrt{3},-1}),\overrightarrow m•\overrightarrow n=1$,且A为锐角
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

分析 (1)利用数量积运算性质,化简已知条件,通过A为锐角.解得A.
(2)利用倍角公式化简函数f(x)=cos2x+4sinAsinx的表达式.利用正弦函数的有界性求解即可.

解答 解:(1)∵$\overrightarrow m=({sinA,cosA}),\overrightarrow n=({\sqrt{3},-1}),\overrightarrow m•\overrightarrow n=1$=$\sqrt{3}$sinA-cosA=2sin(A-$\frac{π}{6}$),A为锐角.
∴A-$\frac{π}{6}$=$\frac{π}{6}$.解得A=$\frac{π}{3}$.
(2)f(x)=cos2x+4cosAsinx=cos2x+2sinx=1-2sin2x+2sinx=-2(sinx-$\frac{1}{2}$)2+$\frac{3}{2}$,
当x∈R时,sinx∈[-1,1].
∴函数f(x)在sinx=$\frac{1}{2}$时,函数取得最大值$\frac{3}{2}$.在sinx=-1时,函数取得最小值:-3.
函数f(x)=cos2x+4sinAsinx(x∈R)的值域:[-3,$\frac{3}{2}$].

点评 本题考查了数量积运算性质、倍角公式、三角函数的单调性、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R,已知f(x)在x=3处取得极值,
(Ⅰ)求f(x)在点A(1,f(1))处的切线方程
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=||x|-6|.
(1)求不等式f(x)<5的整数解的个数;
(2)若存在x∈R,使f(x)-|x|>10-m2成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.掷两枚密度均匀的骰子,掷得两个点数之和为8的概率是(  )
A.$\frac{1}{12}$B.$\frac{1}{11}$C.$\frac{5}{36}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆锥的侧面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为(  )
A.90°B.120°C.150°D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}$sinx-cosx,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,a=1,b=$\sqrt{2}$,B=45°,则锐角A等于(  )
A.30°B.45°C.60°或 30°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an]是首项为2,公差为3的等差数列,Sn为数列{bn}的前n项和,且Sn=n2-2n
(1)求数列{an}及{bn}的通项公式an和bn
(2)若数列{an}的前n项和为Tn,求满足Tn<20bn时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow m=({2cosx+2\sqrt{3}sinx,1}),\overrightarrow n=({cosx,-y})$,且$\overrightarrow m⊥\overrightarrow n$.将y表示为x的函数,若记此函数为f(x),
(1)求f(x)的单调递增区间;
(2)将f(x)的图象向右平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图象,求函数g(x)在x∈[0,π]上的最大值与最小值.

查看答案和解析>>

同步练习册答案