精英家教网 > 高中数学 > 题目详情

如图, 已知四边形ABCDBCEG均为直角梯形,ADBCCEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证:AG平面BDE;
(2)求:二面角GDEB的余弦值.

(1)见解析(2)

解析试题分析:(1)由题设,平面ABCD⊥平面BCEG,可证 两两垂直,据此建设立以 为坐标原点的空间直角坐标系,写出 诸点的坐标,求出平面 的一个法向量 ,由于,要证AG平面BDE,只要证即可;
(2)设平面的一个法向量为 ,由求出的坐标,最后利用向量 求出二面角GDEB的余弦值.
试题解析:
解:由平面,平面
,
平面BCEG,
由平面,.2分
根据题意建立如图所示的空间直角坐标系,可得
.3分

(1)设平面BDE的法向量为,则
 ,
平面BDE的一个法向量为..5分
 
,∴AG∥平面BDE. .7分
(2)由(1)知
设平面EDG的法向量为,则 即
平面EDG的一个法向量为..9分
又平面BDE的一个法向量为
设二面角的大小为,则
二面角的余弦值为.12分
考点:1、空间直角坐系;2、利用空间向量的数量积判断空间中直线与平面的位置关系;3、利用空间向量的夹角求二面角的平面角的余弦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在斜三棱柱中,平面平面ABC,.
(1)求证:
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面
 
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1

(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是等腰梯形,分别是的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。

(1)求证:直线BD⊥平面OAC;
(2)求直线MD与平面OAC所成角的大小;
(3)求点A到平面OBD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,,点在边上,设,过点,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求证:平面
(2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案