精英家教网 > 高中数学 > 题目详情

在斜三棱柱中,平面平面ABC,.
(1)求证:
(2)若,求二面角的余弦值.

(1)证明过程详见解析;(2).

解析试题分析:本题主要考查线线垂直、线面垂直、面面垂直、线线平行、二面角的余弦等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,利用面面垂直的性质得BC⊥平面A1ACC1,则利用线面垂直的性质得A1A⊥BC,由A1B⊥C1C,利用平行线A1A∥C1C,则A1A⊥A1B,利用线面垂直的判定得A1A⊥平面A1BC,则利用线面垂直的性质得A1A⊥A1C;第二问,建立空间直角坐标系,得到面上的点的坐标,计算出向量坐标,求出平面和平面的法向量,利用夹角公式计算出二面角的余弦值.
(1)因为平面A1ACC1⊥平面ABC,AC⊥BC,所以BC⊥平面A1ACC1
所以A1A⊥BC.
因为A1B⊥C1C,A1A∥C1C,所以A1A⊥A1B,
所以A1A⊥平面A1BC,所以A1A⊥A1C.      5分

(2)建立如图所示的坐标系C-xyz.
设AC=BC=2,因为A1A=A1C,
则A(2,0,0),B(0,2,0),A1(1,0,1),C(0,0,0).
=(0,2,0),=(1,0,1),=(-2,2,0).
设n1=(a,b,c)为面BA1C的一个法向量,则n1·=n1·=0,
,取n1=(1,0,-1).
同理,面A1CB1的一个法向量为n2=(1,1,-1).   9分
所以cosán1,n2ñ=
故二面角B-A1C-B1的余弦值为.      12分
考点:线线垂直、线面垂直、面面垂直、线线平行、二面角的余弦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为的交点为.
(1)证明:的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,梯形的面积为6,求平面与底面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,,且,点上.
(1)求证:
(2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是平行四边形,,
.若中点,为线段上的点,且
(1)求证:平面
(2)求PC与平面PAD所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面的菱形,,点边的中点,交于点

(1)求证:
(2)若的大小;
(3)在(2)的条件下,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 已知四边形ABCDBCEG均为直角梯形,ADBCCEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证:AG平面BDE;
(2)求:二面角GDEB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量,若______。

查看答案和解析>>

同步练习册答案