精英家教网 > 高中数学 > 题目详情
17.已知集合A={1,3,m},集合B={m2,1},且A∪B=A,求m的值.

分析 考查集合的运算,同时要注意集合元素的性质中的互异性.

解答 解:∵A∪B=A
∴B⊆A,
则有①m=m2或②m2=3,
①解得:m=1或0,
当m=1时,集合A违背集合元素的性质中的互异性.
∴m=0
由②解得:m=$±\sqrt{3}$
故此题m的值为0,$±\sqrt{3}$.

点评 本题主要考查集合的基本运算,集合的包含关系判断及应用,分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{4}$+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1,y1),B(x2,y2),满足$\frac{{y}_{1}{y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$.
(Ⅰ)证明:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow 0$;
(Ⅱ)求直线AB的斜率,并求出四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)-$\frac{2}{{2}^{x}+1}$,若f(a)=1,则f(-a)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=5sinx•cosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$${\sqrt{3}$(x∈R).求f(x)的最小正周期、单调增区间、图象的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=kx2-lnx(k∈R).
(1)试讨论函数f(x)的单调性;
(2)证明:$\frac{ln2}{{2}^{4}}+\frac{ln3}{{3}^{4}}+\frac{ln4}{{4}^{4}}$+…+$\frac{lnn}{{n}^{4}}$<$\frac{1}{2e}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n) 块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为f(n)=n2-n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin20°•cos10°-cos160°•cos80°的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知甲、乙两组数据如图茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值$\frac{m}{n}$=(  )
A.$\frac{3}{8}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{5}}$=1的左焦点F在x轴上,直线x=m与椭圆交于点A,B,若△FAB的周长的最大值是12,则该椭圆的离心率是$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案