精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=5sinx•cosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$${\sqrt{3}$(x∈R).求f(x)的最小正周期、单调增区间、图象的对称轴.

分析 利用辅助角公式降幂,由周期公式求得周期;再由相位在正弦函数的增区间内求得原函数的增区间,由相位的终边落在y轴上求得原函数的对称轴方程.

解答 解:f(x)=5sinx•cosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$${\sqrt{3}$=$\frac{5}{2}sin2x$$-5\sqrt{3}$×$\frac{1+cos2x}{2}$$+\frac{5}{2}\sqrt{3}$
=$\frac{5}{2}sin2x-\frac{5}{2}\sqrt{3}cos2x$=5sin(2x-$\frac{π}{3}$).
∴T=$\frac{2π}{2}$=π;
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{3}≤\frac{π}{2}+2kπ$,k∈Z,
得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}$,k∈Z.
∴单调增区间为[$kπ-\frac{π}{12},kπ+\frac{5π}{12}$],k∈Z;
由$2x-\frac{π}{3}=\frac{π}{2}+kπ$,得$x=\frac{5π}{12}+\frac{kπ}{2},k∈Z$.
∴对称轴为$x=\frac{5π}{12}+\frac{kπ}{2},k∈Z$.

点评 本题考查三角函数中的恒等变换应用,考查了y=Asin(ωx+φ)型函数的图象和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x+2$\sqrt{3}$sinxcosx.
(1)求f(x)的最小正周期和单调递增区间;
(2)在△ABC中,角A、B、C所对边分别是a,b,c,若f($\frac{A}{2}$)=2,且b+c=4,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式$\frac{1}{|2x-3|}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且以原点为圆心,椭圆的焦距为直径的圆与直线x•sinθ+y•cosθ-1=0相切(θ为常数).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,若椭圆C的左、右焦点分别为F1,F2,过F2的直线l与椭圆分别交于两点M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是首项a1=4,公比q≠1的等比数列,且4a1,a5,-2a3成等差数列,则公比q等于(  )
A.$\frac{1}{2}$B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}中,a2=2,a6=8,则a3a4a5=(  )
A.±64B.64C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={1,3,m},集合B={m2,1},且A∪B=A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2x2+alnx,若对任意两个不等的正数x1,x2(x1>x2),都有f(x1)-f(x2)>8(x1-x2)成立,则实数a的取值范围是(  )
A.a≥4B.a≥3C.a≥2D.以上答案均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=f(x)是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,当x∈[3,6]时,f(x)≤f(5)=3,又f(6)=2,则f(x)=$\left\{\begin{array}{l}{-(x-5)^{2}+3,3≤x≤6}\\{-\frac{1}{3}x,-3<x<3}\\{(x+5)^{2}-3,-6≤x≤-3}\end{array}\right.$.

查看答案和解析>>

同步练习册答案