分析 (Ⅰ)由椭圆离心率为$\frac{\sqrt{2}}{2}$,以原点为圆心,椭圆的焦距为直径的圆与直线x•sinθ+y•cosθ-1=0相切,列出方程组求出a,b,由此能求出椭圆C的标准方程
(Ⅱ)当直线l的斜率不存在时,推导出$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$=$\frac{7}{2}$.当直线l的斜率存在时,设直线l的方程为y=k(x-1),由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=k(x-1)}\end{array}\right.$,得(2k2+1)x2-4k2x+2k2-2=0,利用韦达定理、向量知识,结合题意能求出$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范围.
解答 解:(Ⅰ)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,
且以原点为圆心,椭圆的焦距为直径的圆与直线x•sinθ+y•cosθ-1=0相切,
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{\sqrt{si{n}^{2}θ+co{s}^{2}θ}}=c}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,
解得a=$\sqrt{2}$,b=1,
∴椭圆C的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)当直线l的斜率不存在时,l⊥x轴,方程为x=1,M(1,$\frac{\sqrt{2}}{2}$),N(1,-$\frac{\sqrt{2}}{2}$),
∴$\overrightarrow{{F}_{1}M}$=(2,$\frac{\sqrt{2}}{2}$),$\overrightarrow{{F}_{1}N}$=(2,-$\frac{\sqrt{2}}{2}$),∴$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$=$\frac{7}{2}$.
当直线l的斜率存在时,设直线l的方程为y=k(x-1),
则由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=k(x-1)}\end{array}\right.$,得(2k2+1)x2-4k2x+2k2-2=0,
设M(x1,y1),N(x2,y2),则${x}_{1}+{x}_{2}=\frac{4{k}^{2}}{2{k}^{2}+1}$,${x}_{1}{x}_{2}=\frac{2{k}^{2}-2}{2{k}^{2}+1}$,
$\overrightarrow{{F}_{1}M}=({x}_{1}+1,{y}_{1})$,$\overrightarrow{{F}_{1}N}$=(x2+1,y2),
则$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$=(x1+1)(x2+1)+y1y2=(x1+1)(x2+1)+k(x1-1)•k(x2-1)
=(1+k2)x1x2+(1-k2)(x1+x2)+1+k2,
代入韦达定理得:
$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$=$\frac{2({k}^{4}-1)}{2{k}^{2}+1}$+$\frac{4{k}^{2}-4{k}^{4}}{2{k}^{2}+1}$+k2+1=$\frac{7{k}^{2}-1}{2{k}^{2}+1}$=$\frac{7}{2}-\frac{\frac{9}{2}}{2{k}^{2}+1}$,
由k2≥0,得$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$∈[-1,$\frac{7}{2}$).
综上,$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范围是[-1,$\frac{7}{2}$].
点评 本题考查椭圆方程的求法,考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意韦达定理、向量知识、椭圆性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | i | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com