精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)-$\frac{2}{{2}^{x}+1}$,若f(a)=1,则f(-a)=-3.

分析 令g(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)+$\frac{{2}^{x}-1}{{2}^{x}+1}$,则f(x)=g(x)-1.证明g(-x)+g(x)=0,即可得出结论.

解答 解:令g(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)+$\frac{{2}^{x}-1}{{2}^{x}+1}$,则f(x)=g(x)-1.
∵g(x)+g(-x)=ln(2x+$\sqrt{4{x}^{2}+1}$)+$\frac{{2}^{x}-1}{{2}^{x}+1}$+ln(-2x+$\sqrt{4{x}^{2}+1}$)-$\frac{{2}^{x}-1}{{2}^{x}+1}$=0,
∴f(-a)+f(a)=g(-a)-1+g(a)-1=-2,
∵f(a)=1,∴f(-a)=-3.
故答案为:-3.

点评 本题考查函数的奇偶性的性质的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y=$\frac{1}{2}$x2与直线l:y=kx-1(k为常数)没有公共点,设点P为直线l上的动点,且P的横坐标为x0,Q(k,1)为定点
(1)求抛物线C的准线方程;
(2)若点P与定点Q的连线交抛物线C于M,N两点,求证:|PM|•|ON|=|PN|•|QM|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x<-3,则x+$\frac{2}{x+3}$的最大值为(  )
A.-2$\sqrt{2}$+3B.$-2\sqrt{2}-3$C.$2\sqrt{2}+3$D.$2\sqrt{2}-3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式$\frac{1}{|2x-3|}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的首项a1=3,an+1=3nan,则通项公式an=${3}^{\frac{(n-1)n}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且以原点为圆心,椭圆的焦距为直径的圆与直线x•sinθ+y•cosθ-1=0相切(θ为常数).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,若椭圆C的左、右焦点分别为F1,F2,过F2的直线l与椭圆分别交于两点M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是首项a1=4,公比q≠1的等比数列,且4a1,a5,-2a3成等差数列,则公比q等于(  )
A.$\frac{1}{2}$B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={1,3,m},集合B={m2,1},且A∪B=A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.根据统计资料,我国能源生产自1992年以来发展很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1992年8.6亿吨,5年后的1997年10.4亿吨,10年后的2002年12.9亿吨.有关专家预测,到2007年我国能源生产总量将达到16.1亿吨,则专家是依据下列哪一类函数作为数学模型进行预测的(  )
A.一次函数B.二次函数C.指数函数D.对数函数

查看答案和解析>>

同步练习册答案