精英家教网 > 高中数学 > 题目详情
18.已知抛物线C:y=$\frac{1}{2}$x2与直线l:y=kx-1(k为常数)没有公共点,设点P为直线l上的动点,且P的横坐标为x0,Q(k,1)为定点
(1)求抛物线C的准线方程;
(2)若点P与定点Q的连线交抛物线C于M,N两点,求证:|PM|•|ON|=|PN|•|QM|

分析 (1)求出抛物线的标准方程为x2=2y,由此能求出抛物线C的准线方程.
(2)P(x0,kx0-1),PQ的方程为y=$\frac{k{x}_{0}-2}{{x}_{0}-k}$(x-k)+1,与抛物线方程y=$\frac{1}{2}$x2联立,得x2-$\frac{2k{x}_{0}-4}{{x}_{0}-k}$x+$\frac{(2{k}^{2}-2){x}_{0}-2k}{{x}_{0}-k}$=0,由此利用韦达定理能证明|PM|•|ON|=|PN|•|QM|.

解答 解:(1)∵抛物线C:y=$\frac{1}{2}$x2
∴抛物线的标准方程为x2=2y,
∴$\frac{p}{2}$=$\frac{1}{2}$,
∴抛物线C的准线方程为y=-$\frac{1}{2}$.
证明:(2)∵直线l:y=kx-1(k为常数),设点P为直线l上的动点,且P的横坐标为x0,Q(k,1)为定点,
∴P(x0,kx0-1),
PQ的方程为y=$\frac{k{x}_{0}-2}{{x}_{0}-k}$(x-k)+1,
与抛物线方程y=$\frac{1}{2}$x2联立,消去y,得
x2-$\frac{2k{x}_{0}-4}{{x}_{0}-k}$x+$\frac{(2{k}^{2}-2){x}_{0}-2k}{{x}_{0}-k}$=0
设M(x1,y1),N(x2,y2),则x1+x2=$\frac{2k{x}_{0}-4}{{x}_{0}-k}$,x1x2=$\frac{(2{k}^{2}-2){x}_{0}-2k}{{x}_{0}-k}$,①
要证|PM|•|ON|=|PN|•|QM|,只需证明2x1x2-(k+x0)(x3+x4)+2kx0=0,②
把①代入②:
2x1x2-(k+x0)(x3+x4)+2kx0
=$\frac{2(2{k}^{2}-2){x}_{0}-4k}{{x}_{0}-k}$-(x+x0)•$\frac{2k{x}_{0}-4}{{x}_{0}-k}$+2kx0
=$\frac{2(2{k}^{2}-2){x}_{0}-4k-(k+{x}_{0})(2k{x}_{0}-4)+2k{x}_{0}({x}_{0}-k)}{{x}_{0}-k}$=0,
∴|PM|•|ON|=|PN|•|QM|.

点评 本题考查抛物线的准线方程的求法,考查两组线段乘积相等的证明,是中档题,解题时要认真审题,注意抛物线性质、韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.复数z=$\frac{i}{3-i}$的共轭复数为$\overline z$,则$\overline z$在复平面对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知常数a>0,函数f(x)=ln(1+ax)-$\frac{2x}{x+2}$.
(1)若a=$\frac{1}{2}$,判断f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)=$\left\{\begin{array}{l}{-\frac{a}{x},x≥1}\\{ax+3,x<1}\end{array}\right.$是R上的单调函数,则实数a的取值范围为[-$\frac{3}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ax3+bx2+cx+d有两个极值点x1,x2,若点P(x1,f(x1))为原点,点Q(x2,f(x2))在圆C:(x-2)2+(y-3)2=1上运动时,则函数f(x)图象的切线斜率的最大值为3+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,经过椭圆的左顶点A(-3,0)作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴与点E.
(1)求椭圆C的方程; 
(2)已知P为线段AD的中点,OM∥l,并且OM交椭圆C于点M.
(i)是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标;若不存在,请说明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{4+{x^2}}$,则?x1,x2∈R,x1≠x2,$\frac{{|f({x_1})-f({x_2})|}}{{|{x_1}-{x_2}|}}$的取值范围是(  )
A.[0,+∞)B.[0,1]C.(0,1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{4}$+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1,y1),B(x2,y2),满足$\frac{{y}_{1}{y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$.
(Ⅰ)证明:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow 0$;
(Ⅱ)求直线AB的斜率,并求出四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)-$\frac{2}{{2}^{x}+1}$,若f(a)=1,则f(-a)=-3.

查看答案和解析>>

同步练习册答案