精英家教网 > 高中数学 > 题目详情
4.x、y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,则z=x-2y的最小值为-4.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点A时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3).
代入目标函数z=x-2y,
得z=2-2×3=2-6=-4.
∴目标函数z=x-2y的最小值是-4.
故答案为:-4.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),则f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x+2$\sqrt{3}$sinxcosx.
(1)求f(x)的最小正周期和单调递增区间;
(2)在△ABC中,角A、B、C所对边分别是a,b,c,若f($\frac{A}{2}$)=2,且b+c=4,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列结论:
①若y=cosx,y′=-sinx;      ②若y=-$\frac{1}{\sqrt{x}}$,y′=$\frac{1}{2x\sqrt{x}}$;③若f(x)=$\frac{1}{{x}^{2}}$,f′(3)=-$\frac{2}{27}$;   ④若y=3,则y′=0.
正确个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x<-3,则x+$\frac{2}{x+3}$的最大值为(  )
A.-2$\sqrt{2}$+3B.$-2\sqrt{2}-3$C.$2\sqrt{2}+3$D.$2\sqrt{2}-3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=${log}_{\frac{1}{2}}$(x2-6x+17)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式$\frac{1}{|2x-3|}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且以原点为圆心,椭圆的焦距为直径的圆与直线x•sinθ+y•cosθ-1=0相切(θ为常数).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,若椭圆C的左、右焦点分别为F1,F2,过F2的直线l与椭圆分别交于两点M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2x2+alnx,若对任意两个不等的正数x1,x2(x1>x2),都有f(x1)-f(x2)>8(x1-x2)成立,则实数a的取值范围是(  )
A.a≥4B.a≥3C.a≥2D.以上答案均不对

查看答案和解析>>

同步练习册答案