分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,![]()
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点A时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3).
代入目标函数z=x-2y,
得z=2-2×3=2-6=-4.
∴目标函数z=x-2y的最小值是-4.
故答案为:-4.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2$\sqrt{2}$+3 | B. | $-2\sqrt{2}-3$ | C. | $2\sqrt{2}+3$ | D. | $2\sqrt{2}-3$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥4 | B. | a≥3 | C. | a≥2 | D. | 以上答案均不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com