分析 根据题意,分析可得,f(n)-f(n-1)=2×(n-1),进而可得f(3)-f(2)=2×2,f(4)-f(3)=2×3,…f(n)-f(n-1)=2×(n-1),将这些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),进而可得f(n),即可得答案.
解答 解:分析可得,n-1个圆可以将平面分为f(n-1)个区域,n个圆可以将平面分为f(n)个区域,
增加的这个圆即第n个圆与每个圆都相交,可以多分出2(n-1)个区域,
即f(n)-f(n-1)=2×(n-1),
则有f(3)-f(2)=2×2,
f(4)-f(3)=2×3,
f(5)-f(4)=2×4,
f(6)-f(5)=2×5,
…
f(n)-f(n-1)=2×(n-1),
将这些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),
f(n)=2+(n-1)n=n2-n+2
故答案为f(n)=n2-n+2.
点评 本题主要考查归纳推理的运用,关键要根据题意,分析出每增加一个圆,可以多分出几个区域.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥4 | B. | a≥3 | C. | a≥2 | D. | 以上答案均不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com