精英家教网 > 高中数学 > 题目详情
2.平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n) 块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为f(n)=n2-n+2.

分析 根据题意,分析可得,f(n)-f(n-1)=2×(n-1),进而可得f(3)-f(2)=2×2,f(4)-f(3)=2×3,…f(n)-f(n-1)=2×(n-1),将这些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),进而可得f(n),即可得答案.

解答 解:分析可得,n-1个圆可以将平面分为f(n-1)个区域,n个圆可以将平面分为f(n)个区域,
增加的这个圆即第n个圆与每个圆都相交,可以多分出2(n-1)个区域,
即f(n)-f(n-1)=2×(n-1),
则有f(3)-f(2)=2×2,
f(4)-f(3)=2×3,
f(5)-f(4)=2×4,
f(6)-f(5)=2×5,

f(n)-f(n-1)=2×(n-1),
将这些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),
f(n)=2+(n-1)n=n2-n+2
故答案为f(n)=n2-n+2.

点评 本题主要考查归纳推理的运用,关键要根据题意,分析出每增加一个圆,可以多分出几个区域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列结论:
①若y=cosx,y′=-sinx;      ②若y=-$\frac{1}{\sqrt{x}}$,y′=$\frac{1}{2x\sqrt{x}}$;③若f(x)=$\frac{1}{{x}^{2}}$,f′(3)=-$\frac{2}{27}$;   ④若y=3,则y′=0.
正确个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且以原点为圆心,椭圆的焦距为直径的圆与直线x•sinθ+y•cosθ-1=0相切(θ为常数).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,若椭圆C的左、右焦点分别为F1,F2,过F2的直线l与椭圆分别交于两点M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}中,a2=2,a6=8,则a3a4a5=(  )
A.±64B.64C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={1,3,m},集合B={m2,1},且A∪B=A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2x2+alnx,若对任意两个不等的正数x1,x2(x1>x2),都有f(x1)-f(x2)>8(x1-x2)成立,则实数a的取值范围是(  )
A.a≥4B.a≥3C.a≥2D.以上答案均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b是实数,则“log2a>log2b”是“($\frac{1}{2}$)a>($\frac{1}{2}$)b”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.根据历年气象统计资料知,某地区某日吹东风的概率为$\frac{1}{3}$,下雨的概率为$\frac{2}{5}$,既吹东风又下雨的概率为$\frac{1}{5}$.现已知该日吹东风,则该日下雨的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案