精英家教网 > 高中数学 > 题目详情
5.已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则$\overrightarrow{ED}•\overrightarrow{FC}$等于(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{{\sqrt{3}}}{8}$D.$-\frac{{\sqrt{3}}}{8}$

分析 建立空间坐标系,求出各向量坐标,即可得出答案.

解答 解:由题意可知棱锥A-BCD为正四面体,
以底面BCD的中心O为原点建立空间直角坐标系,如图所示:
则C(-$\frac{\sqrt{3}}{3}$,0,0),B($\frac{\sqrt{3}}{6}$,-$\frac{1}{2}$,0),D($\frac{\sqrt{3}}{6}$,$\frac{1}{2}$,0),A(0,0,$\frac{\sqrt{6}}{3}$),
∵E,F是AB,AD的中点,
∴E($\frac{\sqrt{3}}{12}$,-$\frac{1}{4}$,$\frac{\sqrt{6}}{6}$),F($\frac{\sqrt{3}}{12}$,$\frac{1}{4}$,$\frac{\sqrt{6}}{6}$),
∴$\overrightarrow{ED}$=($\frac{\sqrt{3}}{12}$,$\frac{3}{4}$,-$\frac{\sqrt{6}}{6}$),$\overrightarrow{FC}$=(-$\frac{5\sqrt{3}}{12}$,-$\frac{1}{4}$,-$\frac{\sqrt{6}}{6}$),
∴$\overrightarrow{ED}•\overrightarrow{CF}$=$\frac{\sqrt{3}}{12}$•(-$\frac{5\sqrt{3}}{12}$)+$\frac{3}{4}$•(-$\frac{1}{4}$)+(-$\frac{\sqrt{6}}{6}$)•(-$\frac{\sqrt{6}}{6}$)=-$\frac{1}{8}$.
故选:B.

点评 本题考查了空间向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为120°,若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),|$\overrightarrow{a}$|=2,则向量$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为(  )
A.$-\frac{{\sqrt{33}}}{8}$B.$\frac{\sqrt{33}+1}{8}$C.-$\frac{\sqrt{33}+1}{8}$D.$\frac{1-\sqrt{33}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有6名乒乓球运动员分别来自3个不同国家,每一个国家2人,他们排成一排,列队上场,要求同一国家的人不能相邻,那么不同的排法有240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知公差不为0的等差数列{an},它的前n项和是Sn,$a_2^2={a_1}{a_5}$,a3=5,则$\frac{{{S_n}+49}}{{{a_n}+1}}$取最小值时n=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,若${a_1}=1,{a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$,则数列{an}的通项公式an=n×2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}a$,点E是PD中点.
(1)求证:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从参加数学竞赛的学生中抽出20名学生,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,回答下列问题:

(1)[79.5,89.5)这一组的频率和频数分别为多少?
(2)估计该次数学竞赛的及格率(60分及以上为及格);
(3)若从第一组和第三组的所有学生中随机抽取两人,求他们的成绩相差不超过10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\frac{alnx}{x}$(a∈R)的图象与直线x-2y=0相切,当函数g(x)=f(f(x))-t恰有一个零点时,实数t的取值范围是{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y=tan(x+\frac{π}{6})+2$的定义域是{x|x≠kπ+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

同步练习册答案