精英家教网 > 高中数学 > 题目详情
16.有6名乒乓球运动员分别来自3个不同国家,每一个国家2人,他们排成一排,列队上场,要求同一国家的人不能相邻,那么不同的排法有240.

分析 根据题意,先排第一个位子,有6种方法;再排第二个位子,有4种选法;分第三个位子上的人和第一个位子的人的国家相同、不同两种情况,分别求出数值,再根据分步、分类计数原理,求得结果.

解答 解:6个人排队,需要6个位子,先排第一个位子,有6种方法;
再排第二个位子,需从异于第一个位置的人的国家的人中选一个,有4种选法;
分2种情况讨论:
①、第三个位子放的人与第一个位子的人属于同一个国家,则第4个位子有两种选法,
第5,第6个位子都只有一种选法.
②、第三个位子放的人与第一个位子的人不是同一个国家的,则第3个位子有两种选法,
第4位子也有2种选法,第5位子也有2种选法,第6位子就只有1种选法;
综上,不同的排法有 6×4×(1×2×1×1+2×2×2×1)=240 种,
故答案为:240.

点评 本题考查排列、组合的应用,注意结合题意“同一国家的人不能相邻”,进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足4an=an-1-3(n≥2且n∈N*),且a1=-$\frac{3}{4}$,设bn$+2=3lo{g}_{\frac{1}{4}}$(an+1),n∈N*,数列{cn}满足cn=(an+1)bn
(1)求证{an+1}是等比数列并求出数列{an}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)对于任意n∈N*,cn≤m2-m-$\frac{1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+4cosθ}\\{y=1+4sinθ}\end{array}\right.$(θ为参数),直线l经过定点P(3,4),倾斜角为$\frac{π}{6}$.
(Ⅰ)写出直线l的参数方程和曲线C的标准方程.
(Ⅱ)设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.同时掷两枚骰子,得到的点数和为6的概率是(  )
A.$\frac{5}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设复数z满足i(z-2)=3(i为虚数单位),则z=(  )
A.2+3iB.2-3iC.3+2iD.3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设θ为第三象限角,若tanθ=1,则sinθ+cosθ=$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用数学归纳法证明不等式“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}}$≥1+$\frac{n}{2}$(n∈N*)”的过程中,由n=k到n=k+1时,不等式的左边(  )
A.增加了1项B.增加了2项C.增加了2kD.增加了2k+1项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则$\overrightarrow{ED}•\overrightarrow{FC}$等于(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{{\sqrt{3}}}{8}$D.$-\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=5sin(2x+α) 的图象关于y轴对称,则α=(  )
A.kπ,k∈zB.(2k+1)π,k∈zC.2kπ+$\frac{π}{2}$,k∈zD.kπ+$\frac{π}{2}$,k∈z

查看答案和解析>>

同步练习册答案