精英家教网 > 高中数学 > 题目详情
1.设θ为第三象限角,若tanθ=1,则sinθ+cosθ=$-\sqrt{2}$.

分析 根据题意求出θ的值,再计算sinθ+cosθ的值.

解答 解:θ为第三象限角,tanθ=1,
∴θ=$\frac{5π}{4}$+2kπ,k∈Z;
∴sinθ+cosθ=sin$\frac{5π}{4}$+cos$\frac{5π}{4}$
=-$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$
=-$\sqrt{2}$.
故答案为:-$\sqrt{2}$.

点评 本题考查了特殊角的三角函数求值问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若多项式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设数列{an}的前n项和为Sn.若Sn=2an-n,则$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{4}{a{{\;}_{2}a}_{3}}$+$\frac{8}{{a}_{3}{a}_{4}}$+$\frac{16}{{a}_{4}{a}_{5}}$=$\frac{30}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱A A1和C C1上,AP=C1Q,则多面体A1B1C1-PBQ的体积为(  )
A.$\frac{3V}{4}$B.$\frac{2V}{3}$C.$\frac{V}{2}$D.$\frac{V}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有6名乒乓球运动员分别来自3个不同国家,每一个国家2人,他们排成一排,列队上场,要求同一国家的人不能相邻,那么不同的排法有240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,满足2an+1+Sn-2=0.
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知公差不为0的等差数列{an},它的前n项和是Sn,$a_2^2={a_1}{a_5}$,a3=5,则$\frac{{{S_n}+49}}{{{a_n}+1}}$取最小值时n=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}a$,点E是PD中点.
(1)求证:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x∈R,x2+x+1≥0”的否定为(  )
A.$?{x_0}∈R,x_0^2+{x_0}+1≥0$B.$?{x_0}∈R,x_0^2+{x_0}+1<0$
C.?x∈R,x2+x+1≤0D.?x∈R,x2+x+1<0

查看答案和解析>>

同步练习册答案