精英家教网 > 高中数学 > 题目详情
9.如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱A A1和C C1上,AP=C1Q,则多面体A1B1C1-PBQ的体积为(  )
A.$\frac{3V}{4}$B.$\frac{2V}{3}$C.$\frac{V}{2}$D.$\frac{V}{3}$

分析 根据体积公式可知VB-A′B′C′=VB-ACQP=VB-PQC′A′=$\frac{V}{3}$,故而可得出结论.

解答 解:连结A′B,BC′,则VB-A′B′C′=$\frac{1}{3}{S}_{△A′B′C′}•B{B}_{1}$=$\frac{V}{3}$,
∴VB-ACC′A′=V-VB-A′B′C′=$\frac{2V}{3}$,
∵AP=C1Q,∴S梯形ACQP=$\frac{1}{2}$S矩形ACC′A′
∴VB-ACQP=$\frac{1}{2}$VB-ACC′A′=$\frac{V}{3}$,
∴多面体A1B1C1-PBQ的体积为V-$\frac{V}{3}$=$\frac{2V}{3}$.
故选B.

点评 本题考查了棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,点E为PD中点.
(1)求证:AB⊥PD;
(2)求证:CE∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=xeax,g(x)=lnx+1
(Ⅰ)a=-1,f(x)与g(x)均在x0取到最大值,求x0及k的值;
(Ⅱ)a=k=1时,求证:f(x)≥g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.同时掷两枚骰子,得到的点数和为6的概率是(  )
A.$\frac{5}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.成都西博会期间,某高校有12名志愿者参加服务工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(  )
A.$C_{12}^4C_8^4C_4^4$B.$A_{12}^4A_8^4A_4^4$
C.$\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$D.$C_{12}^4C_8^4C_4^4A_3^3$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设θ为第三象限角,若tanθ=1,则sinθ+cosθ=$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,O是极点,设点A(1,$\frac{π}{6}$),B(2,$\frac{π}{2}$),则△OAB的面积是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U={-2,-1,0,1,2},集合M={0,1},N={0,1,2},则(∁UM)∩N=(  )
A.{0,2}B.{1,2}C.{2}D.{0}

查看答案和解析>>

同步练习册答案