精英家教网 > 高中数学 > 题目详情
20.设(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

分析 (1)赋值x=0,即可得出.
(2)赋值$x=\frac{1}{2}$,可得${a_0}+\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}={(\frac{7}{4})^n}$,再利用(1)即可得出.
(3)分别赋值x=1,赋值x=-1,两式相减即可得出.

解答 解:(1)赋值x=0,所以a0=1.
(2)赋值$x=\frac{1}{2}$,则${a_0}+\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}={(\frac{7}{4})^n}$,
所以由(1)知$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}={(\frac{7}{4})^n}-1$.
(3)赋值x=1,则${a_0}+{a_1}+{a_2}+…+{a_{2n}}={3^n}$,①
赋值x=-1,a0-a1+a2-…-a2n-1+a2n=1,②
两式相减得${a_1}+{a_3}+…+{a_{2n-1}}=\frac{{{3^n}-1}}{2}$.

点评 本题考查了二项式定理、取值法、方程思想,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若多项式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,三内角A,B,C的对边分别为a,b,c,若-$\frac{1}{2}$tanA=sinBcosC+cosBsinC,且△ABC的面积为2$\sqrt{3}$.
(1)求bc的值;
(2)若b=2c,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为120°,若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),|$\overrightarrow{a}$|=2,则向量$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为(  )
A.$-\frac{{\sqrt{33}}}{8}$B.$\frac{\sqrt{33}+1}{8}$C.-$\frac{\sqrt{33}+1}{8}$D.$\frac{1-\sqrt{33}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xoy中,直线${C_1}:\sqrt{3}x+y-4=0$,曲线${C_2}:\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.(φ$为参数),以以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(I)求C1,C2的极坐标方程;
(II)若曲线C3的极坐标方程为$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲线C3分别交C1,C2于点A,B两点,求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设数列{an}的前n项和为Sn.若Sn=2an-n,则$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{4}{a{{\;}_{2}a}_{3}}$+$\frac{8}{{a}_{3}{a}_{4}}$+$\frac{16}{{a}_{4}{a}_{5}}$=$\frac{30}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱A A1和C C1上,AP=C1Q,则多面体A1B1C1-PBQ的体积为(  )
A.$\frac{3V}{4}$B.$\frac{2V}{3}$C.$\frac{V}{2}$D.$\frac{V}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}a$,点E是PD中点.
(1)求证:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

同步练习册答案