精英家教网 > 高中数学 > 题目详情
18.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为48π.

分析 根据球的表面积计算半径,得出圆柱的底面半径个高,代入侧面积公式计算.

解答 解:设球的半径为r,则4πr2=48π,
∴r=2$\sqrt{3}$,
∴圆柱的底面半径为2$\sqrt{3}$,高为4$\sqrt{3}$,
∴圆柱的侧面积S=2$π×2\sqrt{3}$×$4\sqrt{3}$=48π.
故答案为:48π.

点评 本题考查了圆柱的侧面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知圆锥的母线l=10,母线与轴的夹角α=30°,则圆锥的体积为$\frac{125\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设定点A(3,1),B是x轴上的动点,C是直线y=x上的动点,则△ABC周长的最小值是(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a2=4,a4+a7=15. 
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}-2}$+2n,求b1+b2+b3+…+b9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{alnx+1-a-{b}^{2},x≥1}\\{a{x}^{2}-2x,x>1}\end{array}\right.$对任意实数b均恰好有两个零点,则实数a的取值范围是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1在x=1处取得极小值,则实数a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,点E为PD中点.
(1)求证:AB⊥PD;
(2)求证:CE∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

查看答案和解析>>

同步练习册答案